Larval Density Effects on Pupal Size and Weight of the Imported Cabbageworm (Lepidoptera: Pieridae), and their Suitability as Hosts for Pteromalus puparum (Hymenoptera: Pteromalidae)

1986 ◽  
Vol 15 (6) ◽  
pp. 1234-1236 ◽  
Author(s):  
J. A. Lasota ◽  
L. T. Kok
2015 ◽  
Vol 68 ◽  
pp. 353-359 ◽  
Author(s):  
A.M. Barrington ◽  
D.P. Logan ◽  
P.G. Connolly

Burnt pine longhorn (BPL) Arhopalus ferus (Mulsant) (Coleoptera Cerambycidae) is an introduced species sometimes found in association with export logs and sawn timber A rearing method was developed to produce larvae of a known age number and quality for control trials Growth of larvae from newly hatched to 5 weeks was measured on a standard cerambycid artificial diet and on modified diets Replacing pine wood with pine bark sawdust increased survival at 5 weeks from 23 to 76 and mean weight from 9 to 21 mg There were significant interactions between the influences of three factors (diet period of rearing initial larval density) on the weight of surviving larvae Individual rearing was preferred for convenience and a standardised method was used to rear 8740 larvae for disinfestation trials Establishment and survival to 6 weeks for these larvae was 97


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nwamaka Oluchukwu Akpodiete ◽  
Frédéric Tripet

Abstract Background Malaria vector control approaches that rely on mosquito releases such as the sterile insect technique (SIT) and suppression or replacement strategies relying on genetically modified mosquitoes (GMM) depend on effective mass production of Anopheles mosquitoes. Anophelines typically require relatively clean larval rearing water, and water management techniques that minimise toxic ammonia are key to achieving optimal rearing conditions in small and large rearing facilities. Zeolites are extensively used in closed-system fish aquaculture to improve water quality and reduce water consumption, thanks to their selective adsorption of ammonia and toxic heavy metals. The many advantages of zeolites include low cost, abundance in many parts of the world and environmental friendliness. However, so far, their potential benefit for mosquito rearing has not been evaluated. Methods This study evaluated the independent effects of zeolite and daily water changes (to simulate a continuous flow system) on the rearing of An. coluzzii under two feed regimes (powder and slurry feed) and larval densities (200 and 400 larvae per tray). The duration of larval development, adult emergence success and phenotypic quality (body size) were recorded to assess the impact of water treatments on mosquito numbers, phenotypic quality and identification of optimal feeding regimes and larval density for the use of zeolite. Results Overall, mosquito emergence, duration of development and adult phenotypic quality were significantly better in treatments with daily water changes. In treatments without daily water changes, zeolite significantly improved water quality at the lower larval rearing density, resulting in higher mosquito emergence and shorter development time. At the lower larval rearing density, the adult phenotypic quality did not significantly differ between zeolite treatment without water changes and those with daily changes. Conclusions These results suggest that treating rearing water with zeolite can improve mosquito production in smaller facilities. Zeolite could also offer cost-effective and environmentally friendly solutions for water recycling management systems in larger production facilities. Further studies are needed to optimise and assess the costs and benefits of such applications to Anopheles gambiae (s.l.) mosquito-rearing programmes. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document