scholarly journals Comparison between echocardiography and cardiac magnetic resonance for differential diagnosis of left ventricular hypertrophy

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Corsi ◽  
G Todiere ◽  
A Barison ◽  
C Grigoratos ◽  
G.D Aquaro

Abstract Background Left ventricular hypertrophy (LVH) may be due to different causes, ranging from, benign secondary forms (athlete's heart) to severe prognosis cardiomyopathies (i.e. cardiac amyloidosis). Early and accurate differential diagnosis is important to proper patient management. LVH may be detected by echocardiography signs of hypertrophy or other abnormalities often associated to hypertrophic phenotypes. Cardiac magnetic resonance (CMR) is often used to confirm the initial diagnostic suspicion. On the best of our knowledge, there are no study specifically designed to evaluate the final impact of CMR in changing or confirming the initial diagnostic echocardiographic suspicion. Aim To evaluate the clinical prognostic correlates of CMR in patients with echocardiographic or ECG suspicion of LVH (or cardiomyopathies with hypertrophic phenotype). Methods and results We enrolled 275 pts with echocardiographic evidence of LVH. Using current guidelines, the initial echocardiographic diagnostic suspicion was: hypertrophic cardiomyopathy (HCM) in 46.9% of pts; cardiac amyloidosis in 14.5%; hypertensive LVH in 17%; aortic stenosis in 1.5%; athlete's heart in 0.3%; undetermined LVH in 17%. CMR changed the diagnosis in 42% cases: the diagnosis of HCM increased from 44% to 72% of pts; hypertensive and undetermined LVH decreased significantly (respectively to 4% and 5%). Finally, the change in diagnostic suspicion was associated to reclassification of risk of patients: Kaplan-Meier curves demonstrated that HCM and cardiac amyloidosis had worst prognosis than undetermined or hypertensive LVH. Conclusions CMR changed the echocardiographic suspicion in almost half of patients with LVH. This study highlights the indication of CMR in patient with ECG or echocardiographic suspicion of LVH. Kaplan-Meier curves Funding Acknowledgement Type of funding source: None

Author(s):  
Mareike Gastl ◽  
Vera Lachmann ◽  
Aikaterini Christidi ◽  
Nico Janzarik ◽  
Verena Veulemans ◽  
...  

Abstract Objectives Distinguishing hypertrophic cardiomyopathy (HCM) from left ventricular hypertrophy (LVH) due to systematic training (athlete’s heart, AH) from morphologic assessment remains challenging. The purpose of this study was to examine the role of T2 mapping and deformation imaging obtained by cardiovascular magnetic resonance (CMR) to discriminate AH from HCM with (HOCM) or without outflow tract obstruction (HNCM). Methods Thirty-three patients with HOCM, 9 with HNCM, 13 strength-trained athletes as well as individual age- and gender-matched controls received CMR. For T2 mapping, GRASE-derived multi-echo images were obtained and analyzed using dedicated software. Besides T2 mapping analyses, left ventricular (LV) dimensional and functional parameters were obtained including LV mass per body surface area (LVMi), interventricular septum thickness (IVS), and global longitudinal strain (GLS). Results While LVMi was not significantly different, IVS was thickened in HOCM patients compared to athlete’s. Absolute values of GLS were significantly increased in patients with HOCM/HNCM compared to AH. Median T2 values were elevated compared to controls except in athlete’s heart. ROC analysis revealed T2 values (AUC 0.78) and GLS (AUC 0.91) as good parameters to discriminate AH from overall HNCM/HOCM. Conclusion Discrimination of pathologic from non-pathologic LVH has implications for risk assessment of competitive sports in athletes. Multiparametric CMR with parametric T2 mapping and deformation imaging may add information to distinguish AH from LVH due to HCM. Key Points • Structural analyses using T2 mapping cardiovascular magnetic resonance imaging (CMR) may help to further distinguish myocardial diseases. • To differentiate pathologic from non-pathologic left ventricular hypertrophy, CMR including T2 mapping was obtained in patients with hypertrophic obstructive/non-obstructive cardiomyopathy (HOCM/HNCM) as well as in strength-trained athletes. • Elevated median T2 values in HOCM/HNCM compared with athlete’s may add information to distinguish athlete’s heart from pathologic left ventricular hypertrophy.


Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
Abdullahi O Oseni ◽  
Waqas T Qureshi ◽  
Mohammed F Almahmoud ◽  
Alain Bertoni ◽  
David A Bluemke ◽  
...  

Background: Left ventricular hypertrophy (LVH) is an established risk factor for heart failure (HF). However, it is unknown whether LVH detected by electrocardiogram (ECG-LVH) is equivalent to LVH ascertained by cardiac magnetic resonance imaging (MRI-LVH) in terms of prediction of incident HF using risk prediction models like the Framingham Heart Failure Risk Score (FHFRS). Methods: This analysis included 4745 (mean age 61+10 years, 53.5% women, 61.7% non-whites) from the Multi-Ethnic Study of Atherosclerosis who were free of cardiovascular disease at the time of enrollment. ECG-LVH was defined using Cornell’s criteria while MRI-LVH was derived from left ventricular (LV) mass measured by cardiac MRI. Cox proportional hazard regression was used to examine the association between ECG-LVH and MRI-LVH with incident HF. Harrell’s concordance C-index was used to estimate the predictive ability of the FHFRS when either ECG-LVH or MRI-LVH were included as one of its components. The added predictive ability of ECG-LVH and MRI-LVH were investigated using integrated discrimination improvement (IDI) index and relative IDI. Results: ECG-LVH was present in 291(6.1%) while MRI-LVH was present in 499 (10.5%) of the participants. Over a median follow up of 10.4 years, 140 participants developed HF. Both ECG-LVH [HR (95% CI): 2.25(1.38-3.69)] and MRI-LVH [HR (95% CI): 3.80(1.56-5.63)] were associated with an increased risk of HF in multivariable adjusted models (Table 1). The ability of FHFRS to predict HF was improved with MRI-LVH (C-index 0.871, 95% CI: 0.842-0.899) when compared with ECG-LVH (C-index 0.860, 95% CI: 0.833-0.888) (p < 0.0001). To assess the potential clinical utility of using LVH-MRI instead of ECG-LVH, we calculated several measures of reclassification (Table 1), which were consistent with the statistically significantly improved C-statistic with MRI-LVH. Conclusion: Both ECG-LVH and MRI-LVH are predictive of HF when used in the FHFRS. Substituting MRI-LVH for ECG-LVH improves the predictive ability of the FHFRS.


Sign in / Sign up

Export Citation Format

Share Document