scholarly journals A simplified and reproducible method to size the mitral annulus: implications for transcatheter mitral valve replacement

Author(s):  
Mohammad Abdelghani ◽  
Ernest Spitzer ◽  
Osama I.I. Soliman ◽  
Dietrich Beitzke ◽  
Roberta Laggner ◽  
...  
2021 ◽  
Vol 14 (5) ◽  
pp. 541-550 ◽  
Author(s):  
John C. Lisko ◽  
Vasilis C. Babaliaros ◽  
Jaffar M. Khan ◽  
Norihiko Kamioka ◽  
Patrick T. Gleason ◽  
...  

2020 ◽  
Author(s):  
Yu Zou ◽  
Peng Teng ◽  
Liang Ma

Abstract Background: Many patients with mitral regurgitation are denied open-heart surgery due to high risk. Transcatheter mitral valve replacement offers an alternative treatment. This study aimed to test the feasibility of a new self-expanding valved stent for transcatheter mitral valve replacement via apex in an acute animal model.Methods: Eight porcine experiments were performed in the acute study. A left thoracotomy was performed. The new self-expanding transcatheter valved stent was deployed under fluoroscopic guidance within the native mitral annulus via apex. Hemodynamic data, before and after implantation, were recorded. Mitral annulus diameter and valve area were measured using echocardiography. Transvalvular and left ventricular outflow tract pressure gradient were measured invasively. Results: Seven animals underwent successful transapical mitral valve replacement; the implantation was unsuccessful in one animal. The mean procedure time, defined from placing the purse-string to tightening the purse-string, was 17.14 ± 7.86 min. Hemodynamic data before and after transapical mitral valve replacement showed no difference in statistical analysis. The mean diameter and mean functional area of the self-expanding device after implantation were 2.58 ± 1.04 cm and 2.70 ± 0.26 cm2, respectively. Trace to mild central and paravalvular leak was detected in 7 valves. Mean pressure gradient across the self-expanding device was 2.00 ± 0.82 mm Hg; the corresponding gradients across the LVOT were 3.28± 1.11 mm Hg. Postmortem examinations confirmed precise device positioning in 7 animals with no signs of LVOT obstruction.Conclusion: Transcatheter mitral replacement of the new valved stent was confirmed feasible in acute preclinical models. The new stent reveals optimal design parameters.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yu Zou ◽  
Peng Teng ◽  
Liang Ma

Abstract Background Many patients with mitral regurgitation are denied open-heart surgery due to perceived high risk. Transcatheter mitral valve replacement is a therapeutic alternative for patients at high surgical risk. This study aimed to assess the feasibility of a new self-expanding valved stent for transcatheter mitral valve replacement via apex in an acute animal model. Methods Eight porcine experiments were performed in the acute study. A left thoracotomy was performed, and the new self-expanding transcatheter valved stent was deployed under fluoroscopic guidance in the native mitral annulus via apex. Hemodynamic data were recorded before and after implantation. Mitral annulus diameter and valve area were measured using echocardiography. Transvalvular and left ventricular outflow tract pressure gradients were measured using invasive methods. Results Seven animals underwent successful transapical mitral valve replacement; the implantation was unsuccessful in one animal. The mean procedure time, defined from placement to tightening of the purse-string suture, was 17.14 ± 7.86 min. Hemodynamic data before and after transapical mitral valve replacement showed no difference in statistical analysis. The mean diameter of the self-expanding device after implantation was 2.58 ± 1.04 cm; the mean functional area was 2.70 ± 0.26 cm2. Trace-to-mild central and paravalvular leaks were detected in 7 valves. The mean pressure gradient across the self-expanding device was 2.00 ± 0.82 mmHg; the corresponding gradient across the LVOT was 3.28 ± 1.11 mmHg. Postmortem evaluation confirmed precise device positioning in 7 animals with no signs of LVOT obstruction. Conclusion Transcatheter mitral replacement of the new valved stent was confirmed feasible in acute preclinical models. The new stent reveals optimal design parameters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Enrique Garcia-Sayan ◽  
Tiffany Chen ◽  
Omar K. Khalique

Transcatheter mitral valve interventions are an evolving and growing field in which multimodality cardiac imaging is essential for diagnosis, procedural planning, and intraprocedural guidance. Currently, transcatheter mitral valve-in-valve with a balloon-expandable valve is the only form of transcatheter mitral valve replacement (TMVR) approved by the FDA, but valve-in-ring and valve-in-mitral annular calcification interventions are increasingly being performed. Additionally, there are several devices under investigation for implantation in a native annulus. Paravalvular leak (PVL) is a known complication of surgical or transcatheter valve implantation, where regurgitant flow occurs between the prosthetic sewing ring and the native mitral annulus. We sought to describe the role and applications of multimodality cardiac imaging for TMVR, and PVL closure, including the use of Cardiovascular Computed Tomography Angiography and 3-Dimensional Transesophageal Echocardiography for diagnosis, prosthetic valve evaluation, pre-procedural planning, and intraprocedural guidance, as well as evolving technologies such as fusion imaging and 3D printing.


2020 ◽  
Vol 32 (1) ◽  
pp. 1-8
Author(s):  
Georg Lutter ◽  
Lennart Bax ◽  
Yazhou Liu ◽  
Jan-Hinnerk Hansen ◽  
Derk Frank ◽  
...  

Abstract OBJECTIVES Tissue reaction to transcatheter mitral valve replacement in the mitral annulus remains to be elucidated. METHODS Trileaflet porcine pericardial valves were sewn onto self-expanding d-shaped nitinol stents, which were delivered transapically and in an off-pump fashion into the mitral position of 10 pigs. After at least 4 weeks of follow-up, gross pathological assessment and histological examination were performed. The specimens were stained with Movat’s pentachrome, Elastica-van-Gieson and von Kossa staining. The leucocytes, B cells, T cells or macrophages were detected by specific immunohistochemical staining. RESULTS Proper stent positioning in the mitral annulus was achieved in 9/10 animals. Nine of 10 animals survived the desired observation period. In all but one, the mitral valve stent was well integrated into the left atrium and perpendicularly embedded into the annulus by 85 ± 24%. One animal had minor fractures in the nitinol struts and another animal showed tearing of 1 of 4 tethers. Histological examination demonstrated no major tissue reaction with the nitninol struts but well-preserved overall structures around the mitral annulus in 8/9 cases. CONCLUSIONS This is the first report demonstrating good in-growth of transcatheter-delivered anatomically shaped mitral valve stents after at least 4 weeks of follow-up. Histological examination demonstrated progressive healing and neointimalization.


Sign in / Sign up

Export Citation Format

Share Document