scholarly journals Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells

2000 ◽  
Vol 19 (13) ◽  
pp. 3398-3407 ◽  
Author(s):  
R. D. Johnson
2021 ◽  
Author(s):  
Ruben Schep ◽  
Eva K. Brinkman ◽  
Christ Leemans ◽  
Xabier Vergara ◽  
Robin H. van der Weide ◽  
...  

Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1281-1289 ◽  
Author(s):  
Julang Li ◽  
Mark D Baker

Abstract We examined mechanisms of mammalian homologous recombination using a gene targeting assay in which the vector-borne region of homology to the chromosome bore small palindrome insertions that frequently escape mismatch repair when encompassed within heteroduplex DNA (hDNA). Our assay permitted the product(s) of each independent recombination event to be recovered for molecular analysis. The results revealed the following: (i) vector-borne double-strand break (DSB) processing usually did not yield a large double-strand gap (DSG); (ii) in 43% of the recombinants, the results were consistent with crossover at or near the DSB; and (iii) in the remaining recombinants, hDNA was an intermediate. The sectored (mixed) genotypes observed in 38% of the recombinants provided direct evidence for involvement of hDNA, while indirect evidence was obtained from the patterns of mismatch repair (MMR). Individual hDNA tracts were either long or short and asymmetric or symmetric on the one side of the DSB examined. Clonal analysis of the sectored recombinants revealed how vector-borne and chromosomal markers were linked in each strand of individual hDNA intermediates. As expected, vector-borne and chromosomal markers usually resided on opposite strands. However, in one recombinant, they were linked on the same strand. The results are discussed with particular reference to the double-strand-break repair (DSBR) model of recombination.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 249-258
Author(s):  
Angela M Coveny ◽  
Tammy Dray ◽  
Gregory B Gloor

Abstract We examined the influence that heterologous sequences of different sizes have on the frequency of double-strand-break repair by gene conversion in Drosophila melanogaster. We induced a double-strand break on one X chromosome in female flies by P-element excision. These flies contained heterologous insertions of various sizes located 238 bp from the break site in cis or in trans to the break, or both. We observed a significant decrease in double-strand-break repair with large heterologous insertions located either in cis or in trans to the break. Reestablishing the homology by including the same heterologous sequence in cis and in trans to the double-strand break restored the frequency of gene conversion to wild-type levels. In one instance, an allelic nonhomologous insertion completely abolished repair by homologous recombination. The results show that the repair of a double-strand break by gene conversion requires chromosome pairing in the local region of the double-strand break.


2014 ◽  
Vol 2 (1) ◽  
pp. e968020 ◽  
Author(s):  
Tangui Le Guen ◽  
Sandrine Ragu ◽  
Josée Guirouilh-Barbat ◽  
Bernard S Lopez

Sign in / Sign up

Export Citation Format

Share Document