homology directed repair
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 249)

H-INDEX

47
(FIVE YEARS 10)

2022 ◽  
Vol 3 (1) ◽  
pp. 101031
Author(s):  
Carolin Moosmann ◽  
Thomas R. Müller ◽  
Dirk H. Busch ◽  
Kilian Schober

2022 ◽  
Vol 23 (2) ◽  
pp. 631
Author(s):  
Wannaporn Ittiprasert ◽  
Chawalit Chatupheeraphat ◽  
Victoria H. Mann ◽  
Wenhui Li ◽  
André Miller ◽  
...  

The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alice Libri ◽  
Timea Marton ◽  
Ludovic Deriano

DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.


2022 ◽  
Author(s):  
Bethan Clark ◽  
Joel Elkin ◽  
Aleksandra Marconi ◽  
George F Turner ◽  
Alan M Smith ◽  
...  

Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterising the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, likely a result of non-homologous end joining, and a large deletion in the 3′ UTR due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.


2021 ◽  
Author(s):  
Jichen Bao ◽  
Silvan Scheller

Methanococcus maripaludis is a fast-growing and genetically tractable methanogen. To become a useful host organism for the biotechnological conversion of CO2 and renewable hydrogen to fuels and value-added products, its product scope needs to be extended. Metabolic engineering requires reliable and efficient genetic tools, in particular for genome editing related to the primary metabolism that may affect cell growth. We have constructed a genome editing toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair machinery natively present in M. maripaludis. The toolbox enables gene knock-out with a positive rate typically above 89%, despite M. maripaludis being hyper-polyploid. We have replaced the flagellum operon (around 8.9kb) by a beta-glucuronidase gene to demonstrate a larger deletion, and to enable quantification of promotor strengths. The CRISPR/LbCas12a toolbox presented here is currently perhaps the most reliable and fastest method for genome editing in a methanogen.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wenzhi Jiang ◽  
Jenifer Bush ◽  
Jen Sheen

The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in Arabidopsis thaliana, Nicotiana benthamiana, Brassica rapa, and Camelina sativa. Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts. To facilitate facile testing of any Cas9 RNP designs, we developed two GFP reporter genes, which led to sensitive detection of nonhomologous end joining (NHEJ) and homology-directed repair (HDR), with editing efficiency up to 85 and 50%, respectively. When co-transfected with an optimal single-stranded oligodeoxynucleotide (ssODN) donor, precise editing of the AtALS gene via HDR reached 7% by RNPs. Significantly, precise mutagenesis mediated by preassembled primer editor (PE) RNPs led to 50% GFP reporter gene recovery in protoplasts and up to 4.6% editing frequency for the specific AtPDS mutation in the genome. The rapid, versatile and efficient gene editing by CRISPR RNP variants in protoplasts provides a valuable platform for development, evaluation and optimization of new designs and tools in gene and genomic manipulation and is applicable in diverse plant species.


2021 ◽  
Author(s):  
Brandon W. Simone ◽  
Han B. Lee ◽  
Camden L. Daby ◽  
Hirotaka Ata ◽  
Santiago Restrepo-Castillo ◽  
...  

2021 ◽  
Author(s):  
William C Skarnes ◽  
Gang Ning ◽  
Sofia Giansiracusa ◽  
Alexander S Cruz ◽  
Cornelis Blauwendraat ◽  
...  

Modeling human disease in human stem cells requires precise, scarless editing of single nucleotide variants (SNV) on one or both chromosomes. Here we describe improved conditions for Cas9 RNP editing of SNVs that yield high rates of biallelic homology-directed repair. To recover both heterozygous and homozygous SNV clones, catalytically inactive dCas9 was added to moderate high activity Cas9 RNPs. dCas9 can also block re-cutting and damage to SNV alleles engineered with non-overlapping guide RNAs.


Sign in / Sign up

Export Citation Format

Share Document