scholarly journals A genetic model of the effects of insecticide-treated bed nets on the evolution of insecticide-resistance

2015 ◽  
Vol 2015 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Philip L. G. Birget ◽  
Jacob C. Koella
Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 454
Author(s):  
Sulaiman S. Ibrahim ◽  
Muhammad M. Mukhtar ◽  
Helen Irving ◽  
Jacob M. Riveron ◽  
Amen N. Fadel ◽  
...  

The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of a population of a major malaria vector Anopheles funestus sensu stricto from Sahel of Nigeria was characterised. An. funestus s.s. was the only vector found, with a high human blood index (100%) and a biting rate of 5.3/person/night. High Plasmodium falciparum infection was discovered (sporozoite rate = 54.55%). The population is resistant to permethrin (mortality = 48.30%, LT50 = 65.76 min), deltamethrin, DDT (dichlorodiphenyltrichloroethane) and bendiocarb, with mortalities of 29.44%, 56.34% and 54.05%, respectively. Cone-bioassays established loss of efficacy of the pyrethroid-only long-lasting insecticidal nets (LLINs); but 100% recovery of susceptibility was obtained for piperonylbutoxide (PBO)-containing PermaNet®3.0. Synergist bioassays with PBO and diethyl maleate recovered susceptibility, implicating CYP450s (permethrin mortality = 78.73%, χ2 = 22.33, P < 0.0001) and GSTs (DDT mortality = 81.44%, χ2 = 19.12, P < 0.0001). A high frequency of 119F GSTe2 mutation (0.84) was observed (OR = 16, χ2 = 3.40, P = 0.05), suggesting the preeminent role of metabolic resistance. These findings highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in Nigeria.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hermann Watson Sagbohan ◽  
Casimir D. Kpanou ◽  
Razaki Osse ◽  
Fortuné Dagnon ◽  
Germain G. Padonou ◽  
...  

Abstract Background Insecticide resistance is threatening the effectiveness of efforts to control malaria vectors in Benin. This study explores the levels and mechanisms of insecticide resistance in An. gambiae s.l. to pyrethroids. Methods Larvae were collected from August 2017 to July 2018 in five communes in southern Benin (Adjohoun, Allada, Bohicon, Cotonou, and Porto-Novo) representing diverse ecological regions, and were reared in Benin’s insectary. Two- to five-day-old female mosquitoes from each district were exposed to multiple doses of deltamethrin and permethrin (1×, 2×, 5×, and 10×) using the WHO insecticide resistance intensity bioassay. The effect of pre-exposure to the synergist, piperonyl butoxide (PBO), was also tested at different pyrethroid doses. Molecular allele frequencies of kdr (1014F) and ace-1R (119S) insecticide resistance mutations and levels of detoxification enzymes were determined for mosquitoes sampled from each study area. Results An. gambiae s.l. were resistant to pyrethroid-only exposure up to 10× the diagnostic doses in all the study sites for both deltamethrin and permethrin. Mortality was significantly higher in An. gambiae s.l. pre-exposed to PBO followed by exposure to deltamethrin or permethrin compared to mosquitoes exposed to deltamethrin or permethrin only (p < 0.001). The difference in mortality between deltamethrin only and PBO plus deltamethrin was the smallest in Cotonou (16–64%) and the greatest in Bohicon (12–93%). The mortality difference between permethrin only and PBO plus permethrin was the smallest in Cotonou (44–75%) and the greatest in Bohicon (22–72%). In all the study sites, the kdr resistance allele (1014F) frequency was high (75–100%), while the ace-1 resistance allele (G119S) frequency was low (0–3%). Analysis of the metabolic enzymatic activity of An. gambiae s.l. showed overexpression of nonspecific esterases and glutathione S-transferases (GST) in all study sites. In contrast to the PBO results, oxidase expression was low and was similar to the susceptible An. gambiae s.s. Kisumu strain in all sites. Conclusion There is high-intensity resistance to pyrethroids in southern Benin. However, pre-exposure to PBO significantly increased susceptibility to the pyrethroids in the different An. gambiae s.l. populations sampled. The use of PBO insecticide-treated bed nets may help maintain the gains in An. gambiae (s.l.) control in southern Benin. Graphical Abstract


2017 ◽  
Vol 11 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Katey D. Glunt ◽  
Maureen Coetzee ◽  
Silvie Huijben ◽  
A. Alphonsine Koffi ◽  
Penelope A. Lynch ◽  
...  

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Paula Abílio ◽  
Pelágio Marrune ◽  
Nilsa de Deus ◽  
Francisco Mbofana ◽  
Pedro Muianga ◽  
...  

2016 ◽  
Vol 07 (09) ◽  
pp. 852-860 ◽  
Author(s):  
Mark Broom ◽  
Jan Rychtář ◽  
Tracy Spears-Gill

2017 ◽  
Vol 32 (7) ◽  
pp. 980-989 ◽  
Author(s):  
Logan Stuck ◽  
Angelina Lutambi ◽  
Frank Chacky ◽  
Paul Schaettle ◽  
Karen Kramer ◽  
...  

Author(s):  
Marta L. Wayne ◽  
Benjamin M. Bolker

Malaria is transmitted to humans through various species of Anopheles mosquitoes. In this century malaria rarely reaches out of the tropics, being limited by the ecological niche of its mosquito vectors. The most widespread strains of malaria are typically chronic and debilitating, rather than causing acute infection and death, but the cumulative impact of malaria on humanity is enormous. ‘Malaria’ considers the complexity of the disease; the history of human malaria; and the strategies employed against the disease, including the use of compatibility-blocking treatments such as quinine, chloroquine, and artemisinin, and encounter-blocking strategies such as residual indoor spraying and insecticide-treated bed nets. It concludes by considering the future for malaria control.


Sign in / Sign up

Export Citation Format

Share Document