3311A new rat model of chronic thromboembolic pulmonary hypertension induced by repeated intravenous administration of biodegradable alginate microspheres

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Karpov ◽  
N Anikin ◽  
D Cherepanov ◽  
A Mihailova ◽  
M Krasnova ◽  
...  

Abstract Introduction Chronic thromboembolic pulmonary hypertension (CTEPH) is life-threatening complication of pulmonary embolism (PE) with insufficiently understood mechanisms. Several rodent CTEPH models based on i.v. administration of non-biodegradable microparticles have been validated for preclinical studies. Major limitation of these models is the lack of partial dissolution of emboli following their entrapment in the lung vasculature. Purpose The study was aimed at development and validation of rat CTEPH model based on recurrent embolization of (sub)segmental pulmonary artery branches with biodegradable microspheres. Methods Male Wistar rats were used for the experiments. Pulmonary vasculature was embolized either with sodium alginate microspheres (MS) or with autologous blood clots (AT). The animals were randomized into the following groups: i) controls: saline at a volume of 50 μL was injected 4 times with 8-day interval into the tail vein; the same regimen was used in two next groups; ii) AT; iii) MS4; iv) MS8: MS were administered 8 times with 4-day interval. Histological examination of the lungs was performed after 2 and 6 weeks after the last injection. 6 weeks after the last injection the following analyses were performed: treadmill test, transthoracic echocardiography (TTE), right ventricular catheterization with measurement of right ventricular systolic pressure (RVSP), determination of serum endothelin-1 level. Results The survival rate in the MS8 group was 50%. In the other groups, there were no animal deaths. Multiple emboli were found in the lumen of (sub)segmental pulmonary artery branches 2 weeks after the last injection in MS4 and MS8 groups. Increased diameter and thickening of the bronchial arterial wall were also registered. After 6 weeks, the index of hypertrophy of vessel wall in MS4 and MS8 groups was significantly higher than in controls (p=0.041 and p=0.006, respectively) (Fig. 1). No sign of vascular remodeling was identified in the branches of the pulmonary artery in the AT group. Exercise tolerance was significantly reduced in both MS4 and MS8 groups compared with the controls (p=0.025 and p=0.008, respectively). There were no significant differences in exercise tolerance between the AT and control groups. TTE data indicate a significant increase in the diameter of the pulmonary trunk and the right ventricular outflow tract in the MS8 group compared with controls and AT (p<0.05). Significant increase in RVSP as well as in endothelin-1 level versus controls was found only in the MS8 group. Figure 1. Histological changes in the branches of the pulmonary artery 6 weeks after the last injection of emboli. Conclusion Recurrent (×8) intravenous administration of MS in rats resulted in CTEPH development characterized by specific lung vasculature remodelling, reduced exercise tolerance, and persistent rise in RVSP. The model developed can be used for preclinical testing of promising drug candidates.

2019 ◽  
Vol 18 (1) ◽  
pp. 86-95
Author(s):  
A. A. Karpov ◽  
N. A. Anikin ◽  
D. E. Cherepanov ◽  
A. M. Mikhailova ◽  
M. V. Krasnova ◽  
...  

Introduction. Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the most severe complications of pulmonary embolism (PE), characterized by poor prognosis and insuffcient effectiveness of standard treatment approaches. A small number of representative models of CTEPH make it diffcult to conduct preclinical studies of promising pharmacological substances.Objective – development and validation of the experimental model of CTEPH in rats by embolization of the distal branches of the pulmonary artery with biodegradable microspheres.Material and methods. Male Wistar rats were used for the experiments. Biodegradable microspheres (MS) based on sodium alginate and autologous blood clots (AT) were used as embolizing particles. The animals were divided into groups: control: saline solution was injected 4 times with an interval of 8 days into the tail vein; AT: according to the above protocol, 50 μL of AT was injected; MS was administered intravenously in a volume of 50 μl of MS according to two protocols: MS4: 4 times with an interval of 8 days; MS8: 8 times with an interval of 4 days. After 2 and 6 weeks after the last injection, a histological examination of the lungs was performed; after 6 weeks: echocardiographic study (TTE), right ventricular catheterization (RV) with measurement of right ventricular systolic pressure (RVSP), treadmill test, assessment of serum endothelin­1 levels by the immunoassay method.Results. During the experiments, the survival rate in the MS8 group was 50 %. In the other groups, there were no animal losses. According to the treadmill test 6 weeks after the modeling of PE, exercise tolerance was signifcantly reduced in the MC4 and MC8 groups compared with the control group. TTE data indicate a signifcant increase in the diameter of the pulmonary trunk and the right ventricular outflow tract in the MC8 compared with the control and AT. There were signifcant increase in RVSP and the level of endothelin­1 compared with the control only in the MS8. After 6 weeks, the index of hypertrophy of vessel wall of the pulmonary artery in the MC4 and MC8 was signifcantly higher compared with the control and AT groups.Conclusion. Based on the use of MS, administered under the MS 8 protocol, a new representative model of CTEPH has been created, which can be used to test promising pharmacological substances.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Hidenori Moriyama ◽  
Takashi Kawakami ◽  
Masaharu Kataoka ◽  
Takahiro Hiraide ◽  
Mai Kimura ◽  
...  

Background Right ventricular (RV) dysfunction is a prognostic factor for cardiovascular disease. However, its mechanism and pathophysiology remain unknown. We investigated RV function using RV‐specific 3‐dimensional (3D)‐speckle‐tracking echocardiography (STE) in patients with chronic thromboembolic pulmonary hypertension. We also assessed regional wall motion abnormalities in the RV and chronological changes during balloon pulmonary angioplasty (BPA). Methods and Results Twenty‐nine patients with chronic thromboembolic pulmonary hypertension who underwent BPA were enrolled and underwent right heart catheterization and echocardiography before, immediately after, and 6 months after BPA. Echocardiographic assessment of RV function included both 2‐dimensional‐STE and RV‐specific 3D‐STE. Before BPA, global area change ratio measured by 3D‐STE was significantly associated with invasively measured mean pulmonary artery pressure and pulmonary vascular resistance ( r =0.671 and r =0.700, respectively). Dividing the RV into the inlet, apex, and outlet, inlet area change ratio showed strong correlation with mean pulmonary artery pressure and pulmonary vascular resistance before BPA ( r =0.573 and r =0.666, respectively). Only outlet area change ratio was significantly correlated with troponin T values at 6 months after BPA ( r =0.470), and its improvement after BPA was delayed compared with the inlet and apex regions. Patients with poor outlet area change ratio were associated with a delay in RV reverse remodeling after treatment. Conclusions RV‐specific 3D‐STE analysis revealed that 3D RV parameters were novel useful indicators for assessing RV function and hemodynamics in pulmonary hypertension and that each regional RV portion presents a unique response to hemodynamic changes during treatment, implicating that evaluation of RV regional functions might lead to a new guide for treatment strategies.


2021 ◽  
Vol 22 (3) ◽  
pp. 1149
Author(s):  
Andrei A. Karpov ◽  
Nikita A. Anikin ◽  
Aleksandra M. Mihailova ◽  
Sergey S. Smirnov ◽  
Dariya D. Vaulina ◽  
...  

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and life-threatening complication of pulmonary embolism. As existing animal models of CTEPH do not fully recapitulate complex disease pathophysiology, we report a new rat model for CTEPH evoked by repetitive embolization of the distal pulmonary artery branches with partially biodegradable alginate microspheres (MSs). MSs (180 ± 28 μm) were intravenously administered eight times at 4-day intervals; control animals received saline. The validity of the model was confirmed using transthoracic echocardiography, exercise testing, catheterization of the right ventricle, and histological examination of the lung and heart. The animals in the CTEPH group demonstrated a stable increase in right ventricular systolic pressure (RVSP) and decreased exercise tolerance. Histopathological examination revealed advanced medial hypertrophy in the small pulmonary arteries associated with fibrosis. The diameter of the main pulmonary artery was significantly larger in the CTEPH group than in the control group. Marinobufagenin and endothelin-1 serum levels were significantly elevated in rats with CTEPH. In conclusion, repetitive administration of alginate MSs in rats resulted in CTEPH development characterized by specific lung vasculature remodeling, reduced exercise tolerance, and a persistent rise in RVSP. The developed model can be used for pre-clinical testing of promising drug candidates.


2014 ◽  
Vol 12 (4) ◽  
pp. 186-192 ◽  
Author(s):  
David Poch ◽  
Victor Pretorius

Chronic thromboembolic pulmonary hypertension (CTEPH) is defined as a mean pulmonary artery pressure ≥25 mm Hg and pulmonary artery wedge pressure ≤15 mm Hg in the presence of occlusive thrombi within the pulmonary arteries. Surgical pulmonary thromboendarterectomy (PTE) is considered the best treatment option for CTEPH.


2021 ◽  
pp. 204589402110136
Author(s):  
Tailong Zhang ◽  
Weitao Liang ◽  
Longrong Bian ◽  
Zhong Wu

Right heart thrombus (RHT) accompanied by chronic thromboembolic pulmonary hypertension (CTEPH) is a rare entity. RHT may develop in the peripheral veins or in situ within the right heart chambers. The diagnosis of RHT is challenging, since its symptoms are typically non-specific and its imaging features resemble those of cardiac masses. Here, we report two cases of RHT with CTEPH that presented as right ventricular masses initially. Both patients underwent simultaneous pulmonary endarterectomy (PEA) and resection of the ventricular thrombi. Thus, when mass-like features are confirmed by imaging, RHT should be suspected in patients with CTEPH, and simultaneous RHT resection is required along with PEA.


Sign in / Sign up

Export Citation Format

Share Document