scholarly journals TRANSPOSABLE ELEMENTS IN MENDELIAN POPULATIONS. II. DISTRIBUTION OF THREE COPIA-LIKE ELEMENTS IN A NATURAL POPULATION OF DROSOPHILA MELANOGASTER

Genetics ◽  
1983 ◽  
Vol 104 (3) ◽  
pp. 473-483
Author(s):  
Elizabeth A Montgomery ◽  
Charles H Langley

ABSTRACT Twenty X chromosomes isolated from a natural population of Drosophila melanogaster were surveyed using in situ hybridization to determine the number and cytogenetic location of three families of transposable elements: copia, 412 and 297. We found no sites of insertions in high frequency; in fact, frequencies of specific sites for all three elements were so low that each insertion could be interpreted as being unique. This suggests that rates of transposition and deletion for these elements are very high. Our data also show a higher than expected rate of the co-occurrence of different elements at the same site on the same chromosome.

1989 ◽  
Vol 54 (2) ◽  
pp. 113-125 ◽  
Author(s):  
Brian Charlesworth ◽  
Angela Lapid

SummaryData were collected on the distribution of ten families of transposable elements among fourteen X chromosomes isolated from a natural population of Drosophila melanogaster, by means of in situ hybridization to polytene chromosomes. It was found that, with the exception of roo, the copy number per chromosome followed a Poisson distribution. There was no evidence for linkage disequilibrium, either within or between families. Some pairs of families of elements were correlated with respect to the identity of the sites that were occupied in the sample, although there was no evidence for a correlation with respect to the sites at which elements attained relatively high frequencies. Elements appeared to be distributed randomly along the distal part of the X chromosome. There was, however, a strong tendency for elements to accumulate at the base of the chromosome. Element frequencies per chromosome band were generally low, except at the base of the chromosome where bands in subdivisions 19E and 20A sometimes had high frequencies of occupation. These results are discussed in the light of models of the population dynamics of transposable elements. It is concluded that they provide strong evidence for the operation of a force or forces opposing transpositional increase in copy number. The accumulation of elements at the base of the chromosome is consistent with the idea that unequal exchange between elements at non-homologous sites is such a force, although other possibilities cannot be excluded at present. The data suggest that the rate of transposition per element per generation is of the order of 10−4, for the elements included in this study.


1994 ◽  
Vol 64 (3) ◽  
pp. 183-197 ◽  
Author(s):  
Brian Charlesworth ◽  
Philippe Jarne ◽  
Stavroula Assimacopoulos

SummaryThe total genomic copy numbers of ten families of transposable elements of Drosophila melanogaster in a set of ten isogenic lines derived from a natural population were estimated by slot-blotting. The numbers of euchromatic copies of members of each family were determined for each line by in situ hybridization of element probes to polytene chromosomes. Heterochromatic numbers were estimated by subtraction of the euchromatic counts from the total numbers. There was considerable variation between element families and lines in heterochromatic abundances, and the variance between lines for many elements was much greater for the heterochromatin than for the euchromatin. The data are consistent with the view that much of the β-heterochromatin consists of sequences derived from transposable elements. They are also consistent with the hypothesis that similar evolutionary forces control element abundances in both the euchromatin and heterochromatin, although amplification of inert sequences derived from transposable elements may be in part responsible for their accumulation in heterochromatin.


1995 ◽  
Vol 66 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Sergey V. Nuzhdin

SummaryThe distribution of 13 transposable element families along 15 X chromosomes from an African natural population of Drosophila simulans was determined by in situ hybridization to polytene chromosomes. The transposable elements cloned from Drosophila melanogaster all hybridized with Drosophila simulans chromosomes. The number of copies per family was 3·5 times lower in the latter species and correlated with the copy number per family in Drosophila melanogaster. With the exception of 297, the copy number per chromosome followed a Poisson distribution. Element frequencies per chromosome band were generally low. However, several sites of the distal region and the base of the X chromosome had high frequencies of occupation. Elements had higher abundance at the base of the chromosome compared to distal regions. Overall, the distribution of transposable elements in Drosophila simulans is similar to that found in Drosophila melanogaster. These data provide evidence for the operation of a force (or forces) opposing transpositional increase in copy number, and that this force is weaker at the bases of chromosomes, consistent with the idea that recombination between elements at non-homologous sites contains TE copy number. The reduction in copy number of all TE families in Drosophila simulans compared to Drosophila melanogaster can be explained by stronger selection against transposable element multiplication and/or lower rates of transposition in Drosophila simulans.


1994 ◽  
Vol 63 (3) ◽  
pp. 197-212 ◽  
Author(s):  
C. Biémont ◽  
F. Lemeunier ◽  
M. P. Garcia Guerreiro ◽  
J. F. Brookfield ◽  
C. Gautier ◽  
...  

SummaryThe insertion site polymorphism of the copia, mdg1, mdg3, gypsy, and P transposable elements was analysed by in situ hybridization to the polytene chromosomes in genomes of males from a natural population of Drosophila melanogaster. Parameters of various theoretical models of the population biology of transposable elements were estimated from our data, and different hypotheses explaining TE copy number containment were tested. The copia, mdg1 and gypsy elements show evidence for a deficiency of insertions on the X chromosomes, a result consistent with selection against the mutational effects of insertions. On the contrary, mdg3 and P copy numbers fit a neutral model with a balance between regulated transposition and excisions. There is no strong evidence of a systematic accumulation of elements in the distal and proximal regions of the chromosomes where crossing over and ectopic exchanges are reduced. For all chromosome arms but 3L, however, the TE site density increases from the proximal to the distal parts of the chromosomes (the centromeric regions were excluded in this analysis) with sometimes a sharp decrease in density at the extreme tip, following in part the exchange coefficient. The way the copy number of TEs is contained in genomes depends thus on the element considered, and on various forces acting simultaneously, indicating that models of TE dynamics should include details of each element.


Ocean Science ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 17-28 ◽  
Author(s):  
H. van Haren ◽  
R. Groenewegen ◽  
M. Laan ◽  
B. Koster

Abstract. A high sampling rate (1 Hz) thermistor string has been built to accommodate the scientific need to accurately monitor high-frequency and vigorous internal wave and overturning processes in the ocean. The thermistors and their custom designed electronics can register temperature at an estimated precision of about 0.001° C with a response time faster than 0.25 s down to depths of 6000 m. With a quick in situ calibration using SBE 911 CTD an absolute accuracy of 0.005° C is obtained. The present string holds 128 sensors at 0.5 m intervals, which are all read-out within 0.5 s. When sampling at 1 Hz, the batteries and the memory capacity of the recorder allow for deployments of up to 2 weeks. In this paper, the instrument is described in some detail. Its performance is illustrated with examples from the first moored observations, which show Kelvin-Helmholtz overturning and very high-frequency (Doppler-shifted) internal waves besides occasionally large turbulent bores moving up the sloping side of Great Meteor Seamount, Canary Basin, North-Atlantic Ocean.


2000 ◽  
Vol 16 (4) ◽  
pp. 414-430
Author(s):  
Dan Z Reinstein ◽  
Ronald H Silverman ◽  
Tatiana Raevsky ◽  
George J Simoni ◽  
Harriet O Lloyd ◽  
...  

1977 ◽  
Vol 115 (3) ◽  
pp. 539-563 ◽  
Author(s):  
Paul Szabo ◽  
Robert Elder ◽  
Dale M. Steffensen ◽  
Olke C. Uhlenbeck

1992 ◽  
Vol 60 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Brian Charlesworth ◽  
Angela Lapid ◽  
Darlene Canada

SummaryData were collected on the distribution of nine families of transposable elements among second and third chromosomes isolated from a natural population of Drosophila melanogaster, by means of in situ hybridization of element probes to polytene chromosomes. It was found that the copy numbers per chromosome in the distal sections of the chromosome arms followed a Poisson distribution. Elements appeared to be distributed randomly along the distal sections of the chromosome arms. There was no evidence for linkage disequilibrium in the distal sections of the chromosomes, but some significant disequilibrium was detected in proximal regions. There were many significant correlations between different element families with respect to the identity of the sites that were occupied in the sample. There were also significant correlations between families with respect to sites at which elements achieved relatively high frequencies. Element frequencies per chromosome band were generally low in the distal sections, but were higher proximally. These results are discussed in the light of models of the population dynamics of transposable elements. It is concluded that they provide strong evidence for the operation of a force or forces opposing transpositional increase in copy number. The data suggest that the rate of transposition perelement per generation is of the order of 10−4, for the elements included in this study.


Sign in / Sign up

Export Citation Format

Share Document