scholarly journals Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae.

Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 515-522
Author(s):  
L P Wakem ◽  
F Sherman

Abstract Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function.

Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


1989 ◽  
Vol 9 (9) ◽  
pp. 3638-3646
Author(s):  
C M Nicolet ◽  
E A Craig

We have isolated a gene from the yeast Saccharomyces cerevisiae that encodes a 2.0-kilobase heat-inducible mRNA. This gene, which we have designated STI1, for stress inducible, was also induced by the amino acid analog canavanine and showed a slight increase in expression as cells moved into stationary phase. The STI1 gene encodes a 66-kilodalton protein, as determined from the sequence of the longest open reading frame. The putative STI1 protein, as identified by two-dimensional gel electrophoresis, migrated in the region of 73 to 75 kilodaltons as a series of four isoforms with different isoelectric points. STI1 is not homologous to the other conserved HSP70 family members in yeasts, despite similarities in size and regulation. Cells carrying a disruption mutation of the STI1 gene grew normally at 30 degrees C but showed impaired growth at higher and lower temperatures. Overexpression of the STI1 gene resulted in substantial trans-activation of SSA4 promoter-reporter gene fusions, indicating that STI1 may play a role in mediating the heat shock response of some HSP70 genes.


FEBS Letters ◽  
1979 ◽  
Vol 102 (1) ◽  
pp. 55-58 ◽  
Author(s):  
V.E. Koteliansky ◽  
M.A. Glukhova ◽  
M.V. Bejanian ◽  
A.P. Surguchov ◽  
V.N. Smirnov

Sign in / Sign up

Export Citation Format

Share Document