isocitrate lyase
Recently Published Documents


TOTAL DOCUMENTS

685
(FIVE YEARS 64)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Christina-Marie Baumbach ◽  
Antje Rückner ◽  
Lena Partusch ◽  
Eric Engel ◽  
Wieland Schrödl ◽  
...  

Skin infections by keratinophilic fungi are commonly referred to as dermatophytosis and represent a major health burden worldwide. Although patient numbers are on the rise, data on virulence factors, their function and kinetics are scarce. We employed an ex vivo infection model based on guinea pig skin explants (GPSE) for the zoonotic dermatophyte Trichophyton (T.) benhamiae to investigate kinetics of the virulence factors subtilisin (sub) 3, sub 6, metallocarboxypeptidase A (mcpA) and isocitrate lyase (isol) at gene level for ten days. Fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) were used to detect and quantify the transcripts, respectively. Kingdom-spanning, species-specific and virulence factor-specific probes were successfully applied to isolated fungal elements showing inhomogeneous fluorescence signals along hyphae. Staining results for inoculated GPSE remained inconsistent despite thorough optimization. qPCR revealed a significant increase of sub 3- and mcpA-transcripts toward the end of culture, sub 6 and isol remained at a low level throughout the entire culture period. Sub 3 is tightly connected to the de novo formation of conidia during culture. Since sub 6 is considered an in vivo disease marker. However, the presented findings urgently call for further research on the role of certain virulence factors during infection and disease.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 283
Author(s):  
Svetlana V. Kamzolova ◽  
Igor G. Morgunov

Isocitric acid (ICA) has found wide application in medicine as a promising compound with powerful antioxidant activity to combat oxidative stress. In the known microbiological processes of ICA production by non-conventional yeast Yarrowia lipolytica, the pure carbon sources are commonly used. ICA can be also synthetized by Y. lipolytica from ester-aldehyde fraction (EAF)-waste of the ethanol production process. A highly effective method of ICA production from EAF based on regulation of key enzymes (aconitate hydratase and isocitrate lyase) by metabolic regulators (iron and itaconic acid) and aeration was developed. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions, a high aeration (60% of air saturation), an addition of 15 mM itaconic acid, and 2.4 mg/L iron. Under optimal conditions, Y. lipolytica VKM Y-2373 produced 83 g/L ICA with isocitrate to citrate ratio of 4.1:1 and mass yield of 1.1 g/g. The putative mechanism of ICA overproduction from EAF by Y. lipolytica was suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wonsu Cheon ◽  
Young Soo Kim ◽  
Kotnala Balaraju ◽  
Younmi Lee ◽  
Hyeok Tae Kwon ◽  
...  

Susceptible host plants challenged by fungal pathogens can display different types of lesions, which can be attributed to environmental factors affecting the nature of interactions between the host and pathogen. During our survey of apple anthracnose in Korea, two distinct types of disease symptoms, designated as progressive (PS) and static symptoms (SS), were recognized. PS is a typical, rapidly enlarging symptom of apple anthracnose, while SS is a small, dark speck that does not expand further until the harvesting season. Isolation and genotyping of pathogens from disease lesions suggested that all of them belong to Colletotrichum gloeosporioides, a well-known causal agent of apple anthracnose. Two types of isolates were comparable in growth on media, spore germination and appressorium formation, virulence test on fruits at various temperature conditions. Furthermore, they were analyzed at the molecular level by a phylogenetic tree, RNA-seq, and expression of virulence gene. However, the SS isolates were defective in appressorium-mediated penetration into the underlying substratum. RNA-seq analysis of PS and SS isolates showed that distinct transcriptional programs underlie the development of different types of anthracnose symptoms in host plants. One downregulated gene in SS encoded isocitrate lyase is essential for disease development via its involvement in the glyoxylate cycle. It partly explains why SS is less virulent than PS on host plants. Overall, our work challenges the traditional view on the development of different lesion types and provides valuable insights into variations that exist in the pathogen population.


2021 ◽  
Vol 22 (20) ◽  
pp. 11090
Author(s):  
Shuo Zhao ◽  
Daniel Garcia ◽  
Yinglei Zhao ◽  
Danfeng Huang

Carrot (Daucus carota L.) is widely cultivated as one of the most important root crops, and developing an effective presowing treatment method can promote the development of modern mechanized precision sowing. In the present study, a novel seed priming technology, named hydro-electro hybrid priming (HEHP), was used to promote the germination of carrot seeds. Seed germination experiments showed that HEHP was able to increase the germination index (GI) and vigor index (VI) by 3.1-fold and 6.8-fold, respectively, and the effect was significantly superior to that of hydro-priming (HYD) and electrostatic field treatment (EF). The consumption and utilization rate of seed storage reserves were also greatly improved. Meanwhile, both glyoxysomes and mitochondria were found to appear ahead of time in the endosperm cells of HEHP through observations of the subcellular structure of the endosperm. Activities of isocitrate lyase (ICL), NAD-dependent malate dehydrogenase (MDH), pyruvate kinase (PK), and alcohol dehydrogenase (ADH) were significantly increased by HEHP. From transcriptome results, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the glyoxylate cycle, glycolysis, gluconeogenesis, and the citrate cycle were significantly enriched and real-time quantitative PCR (qRT-PCR) analysis confirmed the expression pattern of 15 critical differentially expressed genes (DEGs) in these pathways. All DEGs encoding MDH, phosphoenolpyruvate carboxykinase (PEPCK), and PK were upregulated in HEHP; thus, it is reasonable to infer that the transformation of malate, oxalacetate, phosphoenolpyruvate, and pyruvate in the cytoplasm may be pivotal for the energy supply during early germination. The results suggest that the optimal effect of HEHP is achieved by initiating stored lipid utilization and respiratory metabolism pathways related to germination.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009887
Author(s):  
Aurore Demars ◽  
Armelle Vitali ◽  
Audrey Comein ◽  
Elodie Carlier ◽  
Abdulkader Azouz ◽  
...  

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


2021 ◽  
Author(s):  
Eon-Min Ko ◽  
Ju-Yeon Kim ◽  
Sujin Lee ◽  
Suhkmann Kim ◽  
Jihwan Hwang ◽  
...  

Mycobacterium smegmatis has two isocitrate lyase (ICL) isozymes (MSMEG_0911 and MSMEG_3706). We demonstrated that ICL1 (MSMEG_0911) is the predominantly expressed ICL in M. smegmatis and plays a major role in growth on acetate or fatty acid as the sole carbon and energy source. Expression of the icl1 gene in M. smegmatis was demonstrated to be strongly upregulated during growth on acetate relative to that in M. smegmatis grown on glucose. Expression of icl1 was shown to be positively regulated by the RamB activator, and three RamB-binding sites (RamBS1, RamBS2, and RamBS3) were identified in the upstream region of icl1 using DNase I footprinting analysis. Succinyl-CoA was shown to increase the binding affinity of RamB to its binding sites and enable RamB to bind to RamBS2 that is the most important site for RamB-mediated induction of icl1 expression. These results suggest that succinyl-CoA serves as a coinducer molecule for RamB. Our study also showed that cAMP receptor protein (Crp1: MSMEG_6189) represses icl1 expression in M. smegmatis grown in the presence of glucose. Therefore, the strong induction of icl1 expression during growth on acetate as the sole carbon source relative to the weak expression of icl1 during growth on glucose is likely to result from combined effects of RamB-mediated induction of icl1 in the presence of acetate and Crp-mediated repression of icl1 in the presence of glucose. IMPORTANCE Carbon flux through the glyoxylate shunt has been suggested to affect virulence, persistence, and antibiotic resistance of Mycobacterium tuberculosis . Therefore, it is important to understand the precise mechanism underlying the regulation of the icl gene encoding the key enzyme of the glyoxylate shunt. Using Mycobacterium smegmatis , this study revealed the regulation mechanism underlying induction of icl1 expression in M. smegmatis when the glyoxylate shunt is required. The conservation of the cis - and trans -acting regulatory elements related to icl1 regulation in both M. smegmatis and M. tuberculosis implies that the similar regulatory mechanism operates for the regulation of icl1 expression in M. tuberculosis .


2021 ◽  
Vol 118 (32) ◽  
pp. e2024571118
Author(s):  
Alexandre Gouzy ◽  
Claire Healy ◽  
Katherine A. Black ◽  
Kyu Y. Rhee ◽  
Sabine Ehrt

Acidic pH arrests the growth of Mycobacterium tuberculosis in vitro (pH < 5.8) and is thought to significantly contribute to the ability of macrophages to control M. tuberculosis replication. However, this pathogen has been shown to survive and even slowly replicate within macrophage phagolysosomes (pH 4.5 to 5) [M. S. Gomes et al., Infect. Immun. 67, 3199–3206 (1999)] [S. Levitte et al., Cell Host Microbe 20, 250–258 (2016)]. Here, we demonstrate that M. tuberculosis can grow at acidic pH, as low as pH 4.5, in the presence of host-relevant lipids. We show that lack of phosphoenolpyruvate carboxykinase and isocitrate lyase, two enzymes necessary for lipid assimilation, is cidal to M. tuberculosis in the presence of oleic acid at acidic pH. Metabolomic analysis revealed that M. tuberculosis responds to acidic pH by altering its metabolism to preferentially assimilate lipids such as oleic acid over carbohydrates such as glycerol. We show that the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is impaired in acid-exposed M. tuberculosis likely contributing to a reduction in glycolytic flux. The generation of endogenous reactive oxygen species at acidic pH is consistent with the inhibition of GAPDH, an enzyme well-known to be sensitive to oxidation. This work shows that M. tuberculosis alters its carbon diet in response to pH and provides a greater understanding of the physiology of this pathogen during acid stress.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1326
Author(s):  
Hulya Turk

This research aimed to investigate the effects of progesterone, a mammalian steroid sex hormone, on the mitochondrial respiration in germinating maize seeds. For this purpose, maize seeds were divided into four different groups (control, 10−6, 10−8, and 10−10 mol·L−1 progesterone) and were grown in a germination cabinet in the dark at 24.5 ± 0.5 °C for 4 d. The changes in gene expression levels of citrate synthase (CS), cytochrome oxidase (COX19), pyruvate dehydrogenase (Pdh1), and ATP synthase (ATP6), which is involved in mitochondrial respiration, were studied in root and cotyledon tissues. Significant increases were recorded in the gene expression levels of all studied enzymes. In addition, progesterone applications stimulated activities of malate synthase (MS), isocitrate lyase (ICL), and alpha-amylase, which are important enzymes of the germination step. The changes in gene expression levels of mas1 and icl1 were found parallel to the rise in these enzymes’ activities. It was determined similar increases in root and coleoptile lengths and total soluble protein and total carbohydrate contents. The most remarkable changes were detected in 10−8 mol·L−1 progesterone-treated seedlings. These results clearly indicate that progesterone stimulates mitochondrial respiration by inducing biochemical and molecular parameters and thus accelerates seed germination thanks to the activation of other pathways related to mitochondrial respiration.


Author(s):  
Dustin Duncan ◽  
Karine Auclair

Itaconate is a conjugated 1,4-dicarboxylate produced by macrophages. This small molecule has recently received increasing attention due to its role in modulating the immune response of macrophages upon exposure to pathogens. Itaconate has also been proposed to play an antimicrobial function; however, this has not been explored as intensively. Consistent with the latter, itaconate is known to show antibacterial activity in vitro and was reported to inhibit isocitrate lyase, an enzyme required for survival of bacterial pathogens in mammalian systems. Recent studies have revealed bacterial growth inhibition under biologically relevant conditions. In addition, an antimicrobial role for itaconate is substantiated by the high concentration of itaconate found in bacteria-containing vacuoles, and by the production of itaconate-degrading enzymes in pathogens such as Salmonella enterica ser. Typhimurium, Pseudomonas aeruginosa, and Yersinia pestis. This review describes the current state of literature in understanding the role of itaconate as an antimicrobial agent in host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document