scholarly journals Quantitative genetics of postponed aging in Drosophila melanogaster. II. Analysis of selected lines.

Genetics ◽  
1991 ◽  
Vol 127 (4) ◽  
pp. 729-737
Author(s):  
E W Hutchinson ◽  
A J Shaw ◽  
M R Rose

Abstract Quantitative genetic analyses of Drosophila melanogaster stocks with postponed aging have suffered from the problem of a lack of certainty concerning patterns of allelic differentiation. The present experiments were designed to alleviate this difficulty by selecting for enhanced levels of characters known to be related to postponed aging. Selection successfully increased the degree of differentiation of postponed aging stocks with respect to starvation resistance and fecundity, but persistent additive genetic variance suggested that selection did not result in fixation of alleles. The artificially selected stocks were subjected to crosses to test for patterns of dominance and maternal effects. There was little evidence for these effects in the inheritance of the characters underlying postponed aging, even with the increased differentiation of the selected stocks.

Genetics ◽  
1974 ◽  
Vol 76 (3) ◽  
pp. 537-549
Author(s):  
Gunther Schlager

ABSTRACT Response to two-way selection for systolic blood pressure was immediate and continuous for about eight generations. In the twelfth generation, the High males differed from the Low males by 38 mmHG; the females differed by 39 mmHg. There was little overlap between the two lines and they were statistically significant from each other and from the Random control line. There appeared to be no more additive genetic variance in the eleventh and twelfth generations. Causes for the cessation of response are explored. This is probably due to a combination of natural selection acting to reduce litter sizes in the Low line, a higher incidence of sudden deaths in the High line, and loss of favorable alleles as both selection lines went through a population bottleneck in the ninth generation.—In the eleventh generation, the selected lines were used to produce F1, F2, and backcross generations. A genetic analysis yielded significant additive and dominance components in the inheritance of systolic blood pressure.


1983 ◽  
Vol 42 (1) ◽  
pp. 65-75 ◽  
Author(s):  
James M. Cheverud ◽  
Larry J. Leamy ◽  
William R. Atchley ◽  
J. J. Rutledge

SUMMARYWe report the results of an ontogenetic analysis of quantitative genetic variance components with two replicates drawn from the randombred ICR strain of mice. A total of 432 mice from 108 full-sib families raised in a cross-fostering design were used to estimate direct effects heritability, maternal effects, and environmental effects for weight, head length, trunk length, trunk circumference, and tail length at 17, 24, 31, 38, 45, 52, 59, and 66 days of age. There was no significant difference in heritability between the replicates. Heritabilities either stayed more or less constant with age at about 0·30 (weight, trunk length, trunk circumference) or increased slightly with age (head length, tail length). Maternal effects decreased with age from a maximum of about 0·50 at weaning to about 0·15 at age 66 when growth was nearly complete. Environmental effects increased in relative importance during ontogeny.


2010 ◽  
Vol 92 (4) ◽  
pp. 253-259 ◽  
Author(s):  
JULIETA GOENAGA ◽  
JUAN JOSÉ FANARA ◽  
ESTEBAN HASSON

SummaryFood shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (7·2%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.


1998 ◽  
Vol 72 (1) ◽  
pp. 13-18 ◽  
Author(s):  
CARLA M. SGRÒ ◽  
ARY A. HOFFMANN

To test whether stressful conditions altered levels of heritable variation in fecundity in Drosophila melanogaster, parent–offspring comparisons were undertaken across three generations for flies reared in a combined stress (ethanol, cold shock, low nutrition) environment or a control environment. The stressful conditions did not directly influence fecundity but did lead to a reduced fecundity in the offspring generations, perhaps reflecting cross-generation maternal effects. Both the heritability and evolvability estimates were higher in the combined stress treatment, reflecting an apparent increase in the additive genetic variance under stress. In contrast, there were no consistent changes in the environmental variance across environments.


2014 ◽  
Vol 369 (1649) ◽  
pp. 20130255 ◽  
Author(s):  
Geir H. Bolstad ◽  
Thomas F. Hansen ◽  
Christophe Pélabon ◽  
Mohsen Falahati-Anbaran ◽  
Rocío Pérez-Barrales ◽  
...  

If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.


1983 ◽  
Vol 42 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Hidenori Tachida ◽  
Muneo Matsuda ◽  
Shin-Ichi Kusakabe ◽  
Terumi Mukai

SUMMARYUsing the 602 second chromosome lines extracted from the Ishigakijima population of Drosophila melanogaster in Japan, partial diallel cross experiments (Design II of Comstock & Robinson, 1952) were carried out, and the additive genetic variance and the dominance variance of viability were estimated. The estimated value of the additive genetic variance is 0·01754±0·00608, and the dominance variance 0·00151±0·00114, using a logarithmic scale. Since the value of the additive genetic variance is much larger than expected under mutation–selection balance although the dominance variance is compatible with it, we speculate that in the Ishigakijima population some type of balancing selection must be operating to maintain the genetic variability with respect to viability at a minority of loci. As candidates for such selection, overdominance, frequency-dependent selection, and diversifying selection are considered, and it is suggested that diversifying selection is the most probable candidate for increasing the additive genetic variance.


2016 ◽  
Vol 6 (12) ◽  
pp. 3903-3911 ◽  
Author(s):  
Robert M Griffin ◽  
Holger Schielzeth ◽  
Urban Friberg

Abstract Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 345-353 ◽  
Author(s):  
Michael C Whitlock ◽  
Kevin Fowler

Abstract We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 839-848 ◽  
Author(s):  
Daniel E L Promislow ◽  
Marc Tatar ◽  
Aziz A Khazaeli ◽  
James W Curtsinger

Abstract Peter Medawar proposed that senescence arises from an age-related decline in the force of selection, which allows late-acting deleterious mutations to accumulate. Subsequent workers have suggested that mutation accumulation could produce an age-related increase in additive genetic variance (VA) for fitness traits, as recently found in Drosophila melanogaster. Here we report results from a genetic analysis of mortality in 65,134 D. melanogaster. Additive genetic variance for female mortality rates increases from 0.007 in the first week of life to 0.325 by the third week, and then declines to 0.002 by the seventh week. Males show a similar pattern, though total variance is lower than in females. In contrast to a predicted divergence in mortality curves, mortality curves of different genotypes are roughly parallel. Using a three-parameter model, we find significant V, for the slope and constant term of the curve describing age-specific mortality rates, and also for the rate at which mortality decelerates late in life. These results fail to support a prediction derived from MEDAWAR'S “mutation accumulation” theory for the evolution of senescence. However, our results could be consistent with alternative interpretations of evolutionary models of aging.


Genetics ◽  
1991 ◽  
Vol 127 (4) ◽  
pp. 719-727
Author(s):  
E W Hutchinson ◽  
M R Rose

Abstract Selection has been used to create replicated outbred stocks of Drosophila melanogaster with increased longevity, increased later fecundity, and increased levels of physiological performance at later ages. The present study analyzed the quantitative transmission patterns of such stocks, employing extensive replication in numbers of stocks, individuals, and assayed characters. The populations used derived from five lines with postponed aging and five control lines, all created in 1980 from the same founding base population. The following characters were studied: early 24-hr fecundity, early ovary weight, early female starvation resistance, early male starvation resistance, female longevity and male longevity. Numerous crosses were performed to test for non-Mendelian inheritance, average dominance, maternal effects, sex-linkage and between-line heterogeneity. There was only slight evidence for any of these phenomena arising reproducibly in the characters studied. These findings suggest the value of this set of stocks for studies of the physiological basis of postponed aging.


Sign in / Sign up

Export Citation Format

Share Document