fitness traits
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 46)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Heather E. Ewart ◽  
Peter G. Tickle ◽  
William I. Sellers ◽  
Markus Lambertz ◽  
Dane A. Crossley ◽  
...  

AbstractArmoured, rigid bodied animals, such as Testudines, must self-right should they find themselves in an inverted position. The ability to self-right is an essential biomechanical and physiological process that influences survival and ultimately fitness. Traits that enhance righting ability may consequently offer an evolutionary advantage. However, the energetic requirements of self-righting are unknown. Using respirometry and kinematic video analysis, we examined the metabolic cost of self-righting in the terrestrial Mediterranean spur-thighed tortoise and compared this to the metabolic cost of locomotion at a moderate, easily sustainable speed. We found that self-righting is, relatively, metabolically expensive and costs around two times the mass-specific power required to walk. Rapid movements of the limbs and head facilitate successful righting however, combined with the constraints of breathing whilst upside down, contribute a significant metabolic cost. Consequently, in the wild, these animals should favour environments or behaviours where the risk of becoming inverted is reduced.


2021 ◽  
Author(s):  
◽  
Kelly Maree Hare

<p>The conditions under which reptilian eggs are incubated affect survival probability and physiological attributes of the progeny. The egg-laying skink, Oligosoma suteri, is the only endemic oviparous lizard in New Zealand. No controlled laboratory incubation had previously been undertaken, and thus no information was available on the requirements for successful captive incubation. I studied the effects of incubation regime on the eggs and hatchlings of O. suteri to four months of age. Oligosoma suteri eggs (n = 174) were randomly distributed among three constant incubation temperatures (18°C, 22°C and 26°C) and two water potentials (-120 kPa and -270 kPa). Hatching success and hatchling survival were greatest at 22°C and 26°C, with hatchlings from 18°C incubation suffering from physical abnormalities. Incubation regime and maternal influence did not affect sex of individuals, with equal sex ratios occurring from each incubation treatment. Hatchlings from the 22°C and -120 kPa incubation treatments were larger, for most measurements, and warmer incubation temperatures resulted in increased growth rates. Juveniles from 22°C and 26°C and individuals with greater mass per unit length (condition index) sprinted faster over 0.25 m. Sprint speed was positively correlated with ambient temperature. At four months of age sprint speed decreased in 18°C individuals and individuals incubated at 26°C and -270 kPa compared to their performance at one month. The results suggest that the most successful captive incubation regime for O. suteri is 22°C and -120 kPa. This study also shows that temperature-dependent sex determination does not occur in O. suteri, but that fitness traits are influenced by incubation temperature.</p>


2021 ◽  
Author(s):  
◽  
Kelly Maree Hare

<p>The conditions under which reptilian eggs are incubated affect survival probability and physiological attributes of the progeny. The egg-laying skink, Oligosoma suteri, is the only endemic oviparous lizard in New Zealand. No controlled laboratory incubation had previously been undertaken, and thus no information was available on the requirements for successful captive incubation. I studied the effects of incubation regime on the eggs and hatchlings of O. suteri to four months of age. Oligosoma suteri eggs (n = 174) were randomly distributed among three constant incubation temperatures (18°C, 22°C and 26°C) and two water potentials (-120 kPa and -270 kPa). Hatching success and hatchling survival were greatest at 22°C and 26°C, with hatchlings from 18°C incubation suffering from physical abnormalities. Incubation regime and maternal influence did not affect sex of individuals, with equal sex ratios occurring from each incubation treatment. Hatchlings from the 22°C and -120 kPa incubation treatments were larger, for most measurements, and warmer incubation temperatures resulted in increased growth rates. Juveniles from 22°C and 26°C and individuals with greater mass per unit length (condition index) sprinted faster over 0.25 m. Sprint speed was positively correlated with ambient temperature. At four months of age sprint speed decreased in 18°C individuals and individuals incubated at 26°C and -270 kPa compared to their performance at one month. The results suggest that the most successful captive incubation regime for O. suteri is 22°C and -120 kPa. This study also shows that temperature-dependent sex determination does not occur in O. suteri, but that fitness traits are influenced by incubation temperature.</p>


2021 ◽  
Author(s):  
Javier Gómez Ortega ◽  
Sonika Tyagi ◽  
Christen Mirth ◽  
Matthew Piper

Dietary nutrient composition is essential for shaping important fitness traits and behaviours. Many organisms are protein limited and for Drosophila melanogaster, this limitation manifests at the level of the single most limiting essential Amino Acid (AA) in the diet. The identity of this AA and its effects on female fecundity is readily predictable by a procedure called exome matching in which the sum of AAs encoded by a consumer's exome is used to predict the relative proportion of AAs required in its diet. However, the exome matching calculation does not weight AA contributions to the overall profile by protein size or expression. Here we update the exome matching calculation to include these weightings. Surprisingly, although nearly half of the transcriptome is differentially expressed when comparing male and female flies, we found that creating transcriptome-weighted exome matched diets for each sex did not enhance their fecundity over that supported by exome matching alone. These data indicate that while organisms may require different amounts of dietary protein across conditions, the relative proportion of the constituent AAs remains constant. Interestingly, we also found remarkable conservation of exome matched AA profiles across taxa and that the composition of these profiles could be explained by the metabolic costs of microbial AA synthesis. Thus, it appears that bioenergetic constraints amongst autotrophs shape the relative proportion of AAs that are available across trophic levels and that that this constrains biomass composition.


Author(s):  
Mubashir Ali Rather ◽  
Ambreen Hamadani ◽  
Tariq Ahmad Malik ◽  
Imran Bashir ◽  
Ishfaq Ahmad

Background: Fitness traits include measures of reproductive efficiency of sheep. The improvement in reproductive efficiency has significant impact on overall economy of sheep. Methods: Data spanning over 21 years (1997-2017) were collected from two sheep breeding farm and analyzed with mixed model least-squares maximum likelihood (LSMLMW) computer (PC-2) programme designed by Harvey (1990) to estimate number of lambs born per ewe (NLBE), number of lambs weaned per ewe (NLWE), litter size (LS) and sex ratio (SR) of Kashmir Merino sheep. Result: Overall estimates of 3.56±0.11, 3.20±0.10, 48.32±0.04 and 1.06±0.01 for number of lambs born per ewe (NLBE), number of lambs weaned per ewe (NLWE), litter size (LS) and sex ratio (SR), respectively were observed in the present study. The period of birth had significant (p less than 0.05) effect on NLBE and NLEE. The effect of sire was highly significant on all the traits under study whereas effect of all the non-genetic factors considered had non-significant effect on LS and SR.


Amino Acids ◽  
2021 ◽  
Author(s):  
C. Ruth Archer ◽  
Johannes Fähnle ◽  
Maximilian Pretzner ◽  
Cansu Üstüner ◽  
Nina Weber ◽  
...  

AbstractThe ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition.


2021 ◽  
Author(s):  
Isabel Salado ◽  
PALOMA ALVAREZ-BLANCO ◽  
RAPHAËL BOULAY ◽  
OLIVIER BLIGHT ◽  
SÍLVIA ABRIL ◽  
...  

Abstract One of the main traits of invasive ants is the formation of supercolonies, large networks of polygynous nests lacking intraspecific competition, which allows them to reach high densities that facilitate their spread. However, different supercolonies exhibit different success in expanding along the world. Here, we explore whether the main chemical defensive compound of the Argentine ant could play a role in the differential invasiveness of supercolonies. We assessed differences in the amount of iridomyrmecin among supercolonies in the native range and in three invasive supercolonies: the Main supercolony (the most extended worldwide), and the Corsican and the Catalonian supercolonies (both with a restricted local distribution in Europe). We found that even if the amount of iridomyrmecin varied greatly between invaded regions in the three supercolonies in Europe and the native supercolonies in South America, the differences did not seem related to the success of invasion. The amount of iridomyrmecin of the Main supercolony was the lowest while the highest corresponded to the Corsican supercolony, with the Catalonian having intermediate values. This suggests that the success of a given invasive supercolony may not be explained by higher quantities of this defensive compound. Alternatively, reducing iridomyrmecin quantities in the invasive range could lead to more investment in other fitness traits that increase the invader's competitive ability. Our results open the way for exploring the contribution of defensive compounds in the competitive ability and spread of this global invader.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lisa J. Evans ◽  
Karen E. Smith ◽  
Nigel E. Raine

Individual animals allowed the opportunity to learn generally outperform those prevented from learning, yet, within a species the capacity for learning varies markedly. The evolutionary processes that maintain this variation in learning ability are not yet well understood. Several studies demonstrate links between fitness traits and visual learning, but the selection pressures operating on cognitive traits are likely influenced by multiple sensory modalities. In addition to vision, most animals will use a combination of hearing, olfaction (smell), gustation (taste), and touch to gain information about their environment. Some animals demonstrate individual preference for, or enhanced learning performance using certain senses in relation to particular aspects of their behaviour (e.g., foraging), whereas conspecific individuals may show different preferences. By assessing fitness traits in relation to different sensory modalities we will strengthen our understanding of factors driving observed variation in learning ability. We assessed the relationship between the olfactory learning ability of bumble bees (Bombus terrestris) and their foraging performance in their natural environment. We found that bees which failed to learn this odour-reward association had shorter foraging careers; foraging for fewer days and thus provisioning their colonies with fewer resources. This was not due to a reduced propensity to forage, but may have been due to a reduced ability to return to their colony. When comparing among only individuals that did learn, we found that the rate at which floral resources were collected was similar, regardless of how they performed in the olfactory learning task. Our results demonstrate that an ability to learn olfactory cues can have a positive impact of the foraging performance of B. terrestris in a natural environment, but echo findings of earlier studies on visual learning, which suggest that enhanced learning is not necessarily beneficial for bee foragers provisioning their colony.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 926
Author(s):  
Harmen P. Doekes ◽  
Piter Bijma ◽  
Jack J. Windig

Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait’s mean, or 0.59% of a trait’s standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.


Sign in / Sign up

Export Citation Format

Share Document