scholarly journals Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution.

Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 1097-1104
Author(s):  
W Traut

Abstract The fly Megaselia scalaris Loew possesses three homomorphic chromosome pairs; 2 is the sex chromosome pair in two wild-type laboratory stocks of different geographic origin (designated "original" sex chromosome pair in this paper). The primary male-determining function moves at a very low rate to other chromosomes, thereby creating new Y chromosomes. Random amplified polymorphic DNA markers obtained by polymerase chain reaction with single decamer primers and a few available phenotypic markers were used in testcrosses to localize the sex-determining loci and to define the new sex chromosomes. Four cases are presented in which the primary male-determining function had been transferred from the original Y chromosome to a new locus either on one of the autosomes or on the original X chromosome, presumably by transposition. In these cases, the sex-determining function had moved to a different locus without an obvious cotransfer of other Y chromosome markers. Thus, with Megaselia we are afforded an experimental system to study the otherwise hypothetical primary stages of sex chromosome evolution. An initial molecular differentiation is apparent even in the new sex chromosomes. Molecular differences between the original X and Y chromosomes illustrate a slightly more advanced stage of sex chromosome evolution.

2019 ◽  
Author(s):  
Paris Veltsos ◽  
Nicolas Rodrigues ◽  
Tania Studer ◽  
Wen-Juan Ma ◽  
Roberto Sermier ◽  
...  

AbstractThe canonical model of sex-chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (non-recombinant Y haplotypes) coexist with both XY° males with proto-Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex-determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study shows no effect of sex-chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs seems to result from the differential expression of autosomal genes rather than sex-linked SA genes. Among-male variance in sex-chromosome differentiation is better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X-Y recombination in XY females), independent of sex-linked SA genes.Impact SummaryHumans, like other mammals, present highly differentiated sex chromosomes, with a large, gene-rich X chromosome contrasting with a small, gene-poor Y chromosome. This differentiation results from a process that started approximately 160 Mya, when the Y first stopped recombining with the X. How and why this happened, however, remain controversial. According to the canonical model, the process was initiated by sexually antagonistic selection; namely, selection on the proto-Y chromosome for alleles that were beneficial to males but detrimental to females. The arrest of XY recombination then allowed such alleles to be only transmitted to sons, not to daughters. Although appealing and elegant, this model can no longer be tested in mammals, as it requires a sex-chromosome system at an incipient stage of evolution. Here we focus on a frog that displays within-population polymorphism is sex-chromosome differentiation, where XY males with differentiated chromosomes coexist with XX males lacking Y chromosomes. We find no effect of sex-chromosome differentiation on male phenotype or mating success, opposing expectations from the standard model. Sex linked genes do not seem to have a disproportionate effect on sexual dimorphism. From our results, sexually antagonistic genes show no association with sex-chromosome differentiation in frogs, which calls for alternative models of sex-chromosome evolution.


2018 ◽  
Author(s):  
George Sandler ◽  
Felix E.G. Beaudry ◽  
Spencer C.H. Barrett ◽  
Stephen I. Wright

AbstractThe evolution of sex chromosomes is usually considered to be driven by sexually antagonistic selection in the diploid phase. However, selection during the haploid gametic phase of the lifecycle has recently received theoretical attention as possibly playing a central role in sex chromosome evolution, especially in plants where gene expression in the haploid phase is extensive. In particular, male-specific haploid selection might favour the linkage of pollen beneficial alleles to male sex determining regions on incipient Y chromosomes. This linkage might then allow such alleles to further specialise for the haploid phase. Purifying haploid selection is also expected to slow the degeneration of Y-linked genes expressed in the haploid phase. Here, we examine the evolution of gene expression in flower buds and pollen of two species of Rumex to test for signatures of haploid selection acting during plant sex chromosome evolution. We find that genes with high ancestral pollen expression bias occur more often on sex chromosomes than autosomes and that genes on the Y chromosome are more likely to become enriched for pollen expression bias. We also find that genes with low expression in pollen are more likely to be lost from the Y chromosome. Our results suggest that sex-specific haploid selection during the gametophytic stage of the lifecycle may be a major contributor to several features of plant sex chromosome evolution.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2017 ◽  
Author(s):  
Paris Veltsos ◽  
Kate E. Ridout ◽  
Melissa A. Toups ◽  
Santiago C. González-Martínez ◽  
Aline Muyle ◽  
...  

AbstractSuppressed recombination around a sex-determining locus allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. Both genetic mapping and exome resequencing of individuals across the species range independently identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about a third of the Y chromosome has ceased recombining, a region containing 568 transcripts and spanning 22.3 cM in the corresponding female map. Patterns of gene expression hint at the possible role of sexually antagonistic selection in having favored suppressed recombination. In total, the genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. There was limited evidence of Y-chromosome degeneration in terms of gene loss and pseudogenization, but sequence divergence between the X and Y copies of many sex-linked genes was higher than between M. annua and its dioecious sister species M. huetii with which it shares a sex-determining region. The Mendelian inheritance of sex in interspecific crosses, combined with the other observed pattern, suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining about one million years ago.Article summaryPlants that evolved separate sexes (dioecy) recently are ideal models for studying the early stages of sex-chromosome evolution. Here, we use karyological, whole genome and transcriptome data to characterize the homomorphic sex chromosomes of the annual dioecious plant Mercurialis annua. Our analysis reveals many typical hallmarks of dioecy and sex-chromosome evolution, including sex-biased gene expression and high X/Y sequence divergence, yet few premature stop codons in Y-linked genes and very little outright gene loss, despite 1/3 of the sex chromosome having ceased recombination in males. Our results confirm that the M. annua species complex is a fertile system for probing early stages in the evolution of sex chromosomes.


Author(s):  
Ana Gil-Fernández ◽  
Paul A. Saunders ◽  
Marta Martín-Ruiz ◽  
Marta Ribagorda ◽  
Pablo López-Jiménez ◽  
...  

ABSTRACTSex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in most mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution.AUTHOR SUMMARYThe early steps in the evolution of sex chromosomes are particularly difficult to study. Cessation of recombination around the sex-determining locus is thought to initiate the differentiation of sex chromosomes. Several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has not been considered as an important factor. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone a sex chromosome-autosome fusion, synapsis and DNA repair dynamics are altered along the newly added region of the sex chromosomes, likely interfering with recombination and thus contributing to the genetic isolation of a large segment of the Y chromosome. Therefore, the cellular events that occur during meiosis are crucial to understand the very early stages of sex chromosome differentiation. This can help to explain why sex chromosomes evolve very fast in some organisms while in others they have barely changed for million years.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291
Author(s):  
Peta Hill ◽  
Foyez Shams ◽  
Christopher P. Burridge ◽  
Erik Wapstra ◽  
Tariq Ezaz

Sex determination directs development as male or female in sexually reproducing organisms. Evolutionary transitions in sex determination have occurred frequently, suggesting simple mechanisms behind the transitions, yet their detail remains elusive. Here we explore the links between mechanisms of transitions in sex determination and sex chromosome evolution at both recent and deeper temporal scales (<1 Myr; ~79 Myr). We studied a rare example of a species with intraspecific variation in sex determination, Carinascincus ocellatus, and a relative, Liopholis whitii, using c-banding and mapping of repeat motifs and a custom Y chromosome probe set to identify the sex chromosomes. We identified both unique and conserved regions of the Y chromosome among C. ocellatus populations differing in sex determination. There was no evidence for homology of sex chromosomes between C. ocellatus and L. whitii, suggesting independent evolutionary origins. We discuss sex chromosome homology between members of the subfamily Lygosominae and propose links between sex chromosome evolution, sex determination transitions, and karyotype evolution.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1317-1328 ◽  
Author(s):  
Bryant F McAllister

Abstract Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.


2017 ◽  
Author(s):  
Sahin Naqvi ◽  
Daniel W. Bellott ◽  
David C. Page

Mammalian X and Y chromosomes evolved from an ordinary autosomal pair; genetic decay decimated the Y, which in turn necessitated X chromosome inactivation (XCI). Genes of the ancestral autosomes are often assumed to have undertaken these transitions on uniform terms, but we hypothesized that they varied in their dosage constraints. We inferred such constraints from conservation of microRNA (miRNA)-mediated repression, validated by analysis of experimental data. X-linked genes with a surviving Y homolog have the most conserved miRNA target sites, followed by genes with no Y homolog and subject to XCI, and then genes with no Y homolog but escaping XCI; this heterogeneity existed on the ancestral autosomes. Similar results for avian Z-linked genes, with or without a W homolog, lead to a model of XY/ZW evolution incorporating preexisting dosage sensitivities of individual genes in determining their evolutionary fates, and ultimately shaping the mammalian and avian sex chromosomes.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 815-835 ◽  
Author(s):  
Paris Veltsos ◽  
Kate E. Ridout ◽  
Melissa A. Toups ◽  
Santiago C. González-Martínez ◽  
Aline Muyle ◽  
...  

Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about one-third of the Y chromosome, containing 568 transcripts and spanning 22.3 cM in the corresponding female map, has ceased recombining. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii, which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining ∼1 MYA. Patterns of gene expression within the nonrecombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 321-334 ◽  
Author(s):  
Richard C Moore ◽  
Olga Kozyreva ◽  
Sabine Lebel-Hardenack ◽  
Jiri Siroky ◽  
Roman Hobza ◽  
...  

Abstract Silene latifolia is a dioecious plant with heteromorphic sex chromosomes. The sex chromosomes of S. latifolia provide an opportunity to study the early events in sex chromosome evolution because of their relatively recent emergence. In this article, we present the genetic and physical mapping, expression analysis, and molecular evolutionary analysis of a sex-linked gene from S. latifolia, DD44 (Differential Display 44). DD44 is homologous to the oligomycin sensitivity-conferring protein, an essential component of the mitochondrial ATP synthase, and is ubiquitously expressed in both sexes. We have been able to genetically map DD44 to a region of the Y chromosome that is genetically linked to the carpel-suppressing locus. Although we have physically mapped DD44 to the distal end of the long arm of the X chromosome using fluorescence in situ hybridization (FISH), DD44 maps to the opposite arm of the Y chromosome as determined by our genetic map. These data suggest that chromosomal rearrangements have occurred on the Y chromosome, which may have contributed to the genetic isolation of the Y chromosome. We discuss the implications of these results with respect to the structural and functional evolution of the S. latifolia Y chromosome.


Sign in / Sign up

Export Citation Format

Share Document