chromosome differentiation
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Iulia Darolti ◽  
Lydia J. M. Fong ◽  
Judith E. Mank

AbstractAn accelerated rate of sequence evolution on the X chromosome compared to autosomes, known as Fast-X evolution, has been observed in a range of heteromorphic sex chromosomes. However, it remains unclear how early in the process of sex chromosome differentiation the Fast-X effect becomes detectible. Recently, we uncovered an extreme variation in sex chromosome heteromorphism across Poeciliid fish species. The common guppy, Poecilia reticulata, Endler’s guppy, P. wingei, and the swamp guppy, P. picta, appear to share the same XY system and exhibit a remarkable range of heteromorphism. The sex chromosome system is absent in recent outgroups, including P. latipinna and Gambusia holbrooki. We combined analyses of sequence divergence and polymorphism data across Poeciliids to investigate X chromosome evolution as a function of hemizygosity and reveal the causes for Fast-X effects. Consistent with the extent of Y degeneration in each species, we detect higher rates of divergence on the X relative to autosomes and a strong Fast-X effect in P. picta, while no change in the rate of evolution of X-linked relative to autosomal genes in P. reticulata. In P. wingei, the species with intermediate sex chromosome differentiation, we see an increase in the rate of nonsynonymous substitutions on the older stratum of divergence only. We also use our comparative approach to test different models for the origin of the sex chromosomes in this clade. Taken together, our study reveals an important role of hemizygosity in Fast-X and suggests a single, recent origin of the sex chromosome system in this clade.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2021 ◽  
Author(s):  
Sanjay Kumar ◽  
Asikho Kiso ◽  
N. Abenthung Kithan

Chromosome identification depends on the morphological features of the chromosome and therefore karyotype and its banding pattern analyses are the most suitable technique to identify each and every chromosome of a chromosome complement. Moreover, aberrations caused by breaks play an important role in the evolution of a chromosome set and chromosome complement by decreasing or increasing the chromosome number. Therefore, both the aspects are discussed in detail in the present chapter. At present, the chapter will highlight the karyotype and its components, karyotype trends, evolution and its role in speciation, banding pattern and techniques, chromosome differentiation and linearization, banding applications and their uses, detection and analysis of chromosomal aberrations, chromosome and chromatid types of aberrations and mechanism of the formation of chromosome aberrations and breaks for karyotype evolutionary trends.


Genome ◽  
2021 ◽  
Author(s):  
Yi Dai ◽  
Shuai Huang ◽  
Genlou Sun ◽  
Haifeng Li ◽  
Shiqiang Chen ◽  
...  

<i>Thinopyrum elongatum</i> is an important gene pool for wheat genetic improvement. However, the origins of the <i>Thinopyrum</i> genomes and the nature of the genus’ intraspecific relationships are still controversial. In this study, we used single-copy nuclear genes and non-denaturing fluorescence <i>in situ</i> hybridization (ND-FISH) to characterize genome constitution and chromosome differentiation in <i>Th. elongatum</i>. According to phylogenetic analyses based on <i>PepC</i> and <i>Pgk1</i> genes, there was an E genome with three versions (E<sup>e</sup>, E<sup>b</sup>, E<sup>x</sup>) and St genomes in the polyploid <i>Th. elongatum</i>. The ND-FISH results of pSc119.2 and pAs1 revealed that the karyotypes of diploid <i>Th. elongatum</i> and <i>Th. bessarabicum</i> were different and the chromosome differentiation occurred among accessions of the diploid <i>Th. elongatum</i>. In addition, the tetraploid <i>Th. elongatum</i> has two groups of ND-FISH karyotype, indicating that the tetraploid <i>Th. elongatum</i> might be a segmental allotetraploid. In summary, our results suggested that the diploid <i>Th. elongatum</i>, <i>Th. bessarabicum</i> and <i>Pseudoroegneria</i> were the donors of the E<sup>e</sup>, E<sup>b</sup> and St genome to polyploid <i>Th. elongatum</i> species, respectively.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1008959
Author(s):  
Ana Gil-Fernández ◽  
Paul A. Saunders ◽  
Marta Martín-Ruiz ◽  
Marta Ribagorda ◽  
Pablo López-Jiménez ◽  
...  

Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 849
Author(s):  
Alexandr Sember ◽  
Michaela Pappová ◽  
Martin Forman ◽  
Petr Nguyen ◽  
František Marec ◽  
...  

Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.


Author(s):  
Ana Gil-Fernández ◽  
Paul A. Saunders ◽  
Marta Martín-Ruiz ◽  
Marta Ribagorda ◽  
Pablo López-Jiménez ◽  
...  

ABSTRACTSex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in most mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution.AUTHOR SUMMARYThe early steps in the evolution of sex chromosomes are particularly difficult to study. Cessation of recombination around the sex-determining locus is thought to initiate the differentiation of sex chromosomes. Several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has not been considered as an important factor. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone a sex chromosome-autosome fusion, synapsis and DNA repair dynamics are altered along the newly added region of the sex chromosomes, likely interfering with recombination and thus contributing to the genetic isolation of a large segment of the Y chromosome. Therefore, the cellular events that occur during meiosis are crucial to understand the very early stages of sex chromosome differentiation. This can help to explain why sex chromosomes evolve very fast in some organisms while in others they have barely changed for million years.


2019 ◽  
Vol 33 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Paris Veltsos ◽  
Nicolas Rodrigues ◽  
Tania Studer ◽  
Wen‐Juan Ma ◽  
Roberto Sermier ◽  
...  

Evolution ◽  
2019 ◽  
Vol 74 (3) ◽  
pp. 644-654 ◽  
Author(s):  
Barret C. Phillips ◽  
Nicolas Rodrigues ◽  
Alexandra Jansen van Rensburg ◽  
Nicolas Perrin

Sign in / Sign up

Export Citation Format

Share Document