target sites
Recently Published Documents


TOTAL DOCUMENTS

1168
(FIVE YEARS 325)

H-INDEX

92
(FIVE YEARS 13)

Hemato ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 47-62
Author(s):  
Francesca Lavatelli

The deposition of amyloid light chains (LCs) in target sites translates into tissue damage and organ dysfunction. Clinical and experimental advances have cast new light on the pathophysiology of damage in AL amyloidosis. The currently accepted view is that, besides the alterations caused by fibrillar deposits in the extracellular space, direct proteotoxicity exerted by prefibrillar LC species is an important pathogenic factor. As our knowledge on the pathological species and altered cellular pathways grows, novel potential therapeutic strategies to prevent or reduce damage can be rationally explored. Complementing chemotherapy with approaches aimed at disrupting the deposited fibrils and stabilizing prefibrillar amyloidogenic LC may allow halting or even reverting damage in target sites. This review recapitulates the current knowledge and the most recent acquisitions regarding the mechanisms of organ damage in AL amyloidosis, with special emphasis on the heart, and will provide a critical discussion on possible novel treatment targets.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gowoon Kim ◽  
Yijuan Xu ◽  
Jiarong Zhang ◽  
Zhongquan Sui ◽  
Harold Corke

Listeria monocytogenes is a foodborne pathogen, with relatively low incidence but high case-fatality. Phytochemicals have been recognized as a promising antimicrobial agent as an alternative to synthetic chemicals due to their safety and high efficacy with multi-target sites. This study identified and characterized a novel antibacterial agent, dehydrocorydaline, in the Corydalis turschaninovii rhizome using HPLC-LTQ-Orbitrap-HRMS, and its antibacterial effect with lowest MIC (1 mg/mL) and MBC (2 mg/mL) values. In addition, an in vitro growth kinetic assay, cytoplasmic nucleic acid and protein leakage assay, and observation of morphological changes in bacterial cells supported the strong antibacterial activity. Dehydrocorydaline also displayed effective inhibitory effects on biofilm formation and bacterial motility. In order to investigate the potential antibacterial mechanism of action of dehydrocorydaline against L. monocytogenes, label-free quantitative proteomics was used, demonstrating that dehydrocorydaline has multiple targets for combating L. monocytogenes including dysregulation of carbohydrate metabolism, suppression of cell wall synthesis, and inhibition of bacterial motility. Overall, this study demonstrated that dehydrocorydaline has potential as a natural and effective antibacterial agent with multi-target sites in pathogenic bacteria, and provides the basis for development of a new class of antibacterial agent.


2022 ◽  
Author(s):  
Bingjie Li ◽  
Yun Shang ◽  
Lixianqiu Wang ◽  
Jing Lv ◽  
Fengjiao Wang ◽  
...  

CRISPR/Cas9-mediated gene editing provides a powerful tool for dissecting gene function and improving important traits in crops. However, there are still persisting challenges to obtain high homozygous/bi-allelic (ho/bi) mutations in dicot plants. Here, we develop an improved CRISPR/Cas9 system harboring a calreticulin-like gene promoter, which can boost targeted mutations in dicots. Additionally, the pDC45_dsg construct, combining a 35Spro-tRNA_sgRNA-EU unit and PCE8pro-controlled Cas9, can achieve more than 80.0% ho/bi mutations at target sites in allotetraploid tobacco. We construct pDC45_Fast system that can simultaneously fulfill gene editing and shorten the life span of T0 generation tobacco and tomato. This study provides new tools for improving targeted gene mutagenesis in dicots, and makes manipulations of genes in Solanum more feasible.


Author(s):  
Shalu Kumari Pathak ◽  
Arvind Sonwane ◽  
Subodh Kumar

Background: Programmable nucleases are very promising tools of genome editing (GE), but they suffer from limitations including potential risk of genotoxicity which led to the exploration of safer approach of GE based on RNA-guided recombinase (RGR) platform. RNA-guided recombinase (RGR) platform operates on a typical recognition or target site comprised of the minimal pseudo-core recombinase site, a 5 to 6-base pair spacer flanking it and whole this central region is flanked by two guide RNA-specified DNA sequences or Cas9 binding sites followed by protospacer adjacent motifs (PAMs). Methods: The current study focuses on analysis of entire cattle genome to prepare a detailed map of target sites for RNA-guided hyperactivated recombinase Gin with spacer length six. For this, chromosome wise whole genomic sequence data was retrieved from Ensembl. After that search pattern for recombinase Gin with spacer length six was designed. By using this search pattern, RGR target sites were located by using dreg program of Emboss package. Result: Total number of RGR target sites identified in bovine genome for recombinase Gin was 677 with spacer length six. It was also investigated that whether these RGR target sites are present with in any gene or not and it was found that RGR target sites lies in both genic and intergenic region. Besides this, description of genes in context with these target sites was identified.


2022 ◽  
Author(s):  
Stephen Oloninefa ◽  
Abalaka Moses Enemaduku ◽  
Daniyan Safiya Yahaya ◽  
Mann Abdullahi

The menace of drug resistance, bioavailability and drug delivery to the target sites has motivated researchers to search for new antimicrobial agents from medicinal plants and subsequently use them for the biosynthesis of silver nanoparticles for effective killing of bacteria challenging to kill using crude extracts. The biosynthesis of silver nanoparticles was done using aqueous extract (AQE) of E<i>uphorbia heterophylla</i>, while characterization and the killing rate of conjugated silver nanoparticles (CA<sub>g</sub>NP<sub>s</sub>) were carried out using standard methods. The maximum wavelength obtained for CA<sub>g</sub>NP<sub>s</sub> was 410.33 nm, while the size distribution was 237.8 d.nm. The Fourier Transform Infra-Red result showed O-H (3308.94 cm<sup>-1</sup>), which is responsible for stabilising and reducing silver ions, while the Transmission Electron Microscopy revealed the presence of monodispersed spherical shapes CA<sub>g</sub>NP<sub>s</sub>. The Energy Dispersive Spectroscopy confirmed the presence of silver. There were reductions in the clinical bacterial isolates exposed to CA<sub>g</sub>NP<sub>s</sub> as the exposure time increased. <i>Escherichia coli</i> was killed between 6-7 h while<i> Salmonella typhimurium</i> was killed at the seven has the value of 0.00 log<sub>10</sub> CFU/ml was recorded respectively. However, there were increments in the populations of clinical bacterial isolates in control as the time of exposure increased. Therefore, the study suggests that the CA<sub>g</sub>NP<sub>s</sub> exhibit intense antimicrobial activity and the potential to be developed as an alternative agent to treat bacterial infections, curb multidrug-resistant bacterial infection, and promote speedy drug delivery to the target sites.


2022 ◽  
Vol 15 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Harald Luksch ◽  
Hans Straka ◽  
Tobias Kohl

Knowledge about body motion kinematics and underlying muscle contraction dynamics usually derives from electromyographic (EMG) recordings. However, acquisition of such signals in snakes is challenging because electrodes either attached to or implanted beneath the skin may unintentionally be removed by force or friction caused from undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a reliable method for stable subdermal implantation of up to eight bipolar electrodes above the target muscles. The mechanical stability of the inserted electrodes and the overnight coverage of the snake body with a “sleeping bag” ensured the recording of reliable and robust chronic EMG activity. The utility of the technique was verified by daily acquisition of high signal-to-noise activity from all target sites over four consecutive days during stimulus-evoked postural reactions in Amazon tree boas and Western diamondback rattlesnakes. The successful demonstration of the chronic recording suggests that this technique can improve acute experiments by enabling the collection of larger data sets from single individuals.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dana Hirsch ◽  
Ayelet Kohl ◽  
Yuan Wang ◽  
Dalit Sela-Donenfeld

Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cheng Zheng ◽  
Wei-Qian Lin ◽  
Yao-Ji Wang ◽  
Fang-Zhou Lv ◽  
Qi-Qi Jin ◽  
...  

Aims: This study aimed to investigate an appropriate catheter manipulation approach for ventricular arrhythmias (VAs) originating from the left ventricular epicardium adjacent to the transitional area from the great cardiac vein to the anterior interventricular vein (DGCV-AIV).Methods: A total of 123 patients with DGCV-AIV VAs were retrospectively analyzed. All these patients underwent routine mapping and ablation by conventional approach [Non-Swartz sheath support (NS) approach] firstly. In the situation of the distal portion of the coronary venous system (CVS) not being accessed or a good target site not being obtained, the Swartz sheath support (SS) approach was attempted alternatively. If this still failed, the hydrophilic coated guidewire and left coronary angiographic catheter-guided deep engagement of Swartz sheath in GCV to support ablation catheter was performed.Results: A total of 103 VAs (103/123, 83.74%) were successfully eliminated in DGCV-AIV. By NS approach, the tip of the catheter reached DGCV in 39.84% VAs (49/123), reached target sites in 35.87% VAs (44/123), and achieved successful ablation in 30.89% VAs (38/123), which was significantly lower than by SS approach (88.61% (70/79), 84.81 % (67/79), and 75.95% (60/79), P &lt; 0.05). There were no significant differences in complication occurrence between the NS approach and the SS approach (4/123, 3.25% vs. 7/79, 8.86%, p &gt; 0.05). The angle between DGCV and AIV &lt;83° indicated an inaccessible AIV by catheter tip with a predictive value of 94.5%. Width/height of coronary venous system&gt;0.69 more favored a SS approach with a predictive value of 87%.Conclusion: For radiofrequency catheter ablation (RFCA) of VAs arising from DGCV-AIV, the SS approach facilitates the catheter tip to achieve target sites and contributes to a successful ablation.


2021 ◽  
Vol 23 (1) ◽  
pp. 46
Author(s):  
Wing-Keung Chu ◽  
Li-Man Hung ◽  
Chun-Wei Hou ◽  
Jan-Kan Chen

The pluripotent transcription factor NANOG is essential for maintaining embryonic stem cells and driving tumorigenesis. We previously showed that PKC activity is involved in the regulation of NANOG expression. To explore the possible involvement of microRNAs in regulating the expression of key pluripotency factors, we performed a genome-wide analysis of microRNA expression in the embryonal carcinoma cell line NT2/D1 in the presence of the PKC activator, PMA. We found that MIR630 was significantly upregulated in PMA-treated cells. Experimentally, we showed that transfection of MIR630 mimic into embryonal carcinoma cell lines directly targeted the 3′UTR of OCT4, SOX2, and NANOG and markedly suppressed their expression. RNAhybrid and RNA22 algorithms were used to predict miRNA target sites in the NANOG 3’UTR, four possible target sites of MIR630 were identified. To examine the functional interaction between MIR630 and NANOG mRNA, the predicted MIR630 target sites in the NANOG 3’UTR were deleted and the activity of the reporters were compared. After targeted mutation of the predicted MIR630 target sites, the MIR630 mimic inhibited NANOG significantly less than the wild-type reporters. It is worth noting that mutation of a single putative binding site in the 3’UTR of NANOG did not completely abolish MIR630-mediated suppression, suggesting that MIR630 in the NANOG 3’UTR may have multiple binding sites and act together to maximally repress NANOG expression. Interestingly, MIR630 mimics significantly downregulated NANOG gene transcription. Exogenous expression of OCT4, SOX2, and NANOG lacking the 3’UTR almost completely rescued the reduced transcriptional activity of MIR630. MIR630 mediated the expression of differentiation markers in NT2/D1 cells, suggesting that MIR630 leads to the differentiation of NT2/D1 cell. Our findings show that MIR630 represses NANOG through transcriptional and post-transcriptional regulation, suggesting a direct link between core pluripotency factors and MIR630.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amarjitsing Rajput ◽  
Satish Mandlik ◽  
Varsha Pokharkar

Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis’s current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.


Sign in / Sign up

Export Citation Format

Share Document