A Genetically Marked I Element in Drosophila melanogaster Can Be Mobilized When ORF2 Is Provided in trans

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 267-275
Author(s):  
Isabelle Busseau ◽  
Sophie Malinsky ◽  
Maria Balakireva ◽  
Marie-Christine Chaboissier ◽  
Danielle Teninges ◽  
...  

Abstract I factors in Drosophila melanogaster are non-LTR retrotransposons similar to mammalian LINEs. They transpose at very high frequencies in the germ line of SF females resulting from crosses between reactive females, devoid of active I factors, and inducer males, containing active I factors. The vermilion marked IviP2 element was designed to allow easy phenotypical screening for retrotransposition events. It is deleted in ORF2 and therefore cannot produce reverse transcriptase. IviP2 can be mobilized at very low frequencies by actively transposing I factors in the germ line of SF females. This paper shows that IviP2 can be mobilized more efficiently in the germ line of strongly reactive females in the absence of active I factors, when it is trans-complemented by the product of ORF2 synthesized from the hsp70 heat-shock promoter. This represents a promising step toward the use of marked I elements to study retrotransposition and as tools for mutagenesis.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1147-1155 ◽  
Author(s):  
Sophie Malinsky ◽  
Alain Bucheton ◽  
Isabelle Busseau

Abstract I factors in Drosophila melanogaster are non-LTR retrotransposons that transpose at very high frequencies in the germ line of females resulting from crosses between reactive females (devoid of active I factors) and inducer males (containing active I factors). Constructs containing I factor ORF1 under the control of the hsp70 promoter repress I factor activity. This repressor effect is maternally transmitted and increases with the transgene copy number. It is irrespective of either frame integrity or transcriptional orientation of ORF1, suggesting the involvement of a homology-dependent trans-silencing mechanism. A promoterless transgene displays no repression. The effect of constructs in which ORF1 is controlled by the hsp70 promoter does not depend upon heat-shock treatments. No effect of ORF1 is detected when it is controlled by the I factor promoter. We discuss the relevance of the described regulation to the repression of I factors in I strains.


1986 ◽  
Vol 55 (2) ◽  
pp. 256-271 ◽  
Author(s):  
H. E. Heffner ◽  
R. S. Heffner

The hearing ability of five Japanese macaques (Macaca fuscata) was assessed following two-stage bilateral auditory cortex lesions. The animals were tested using a shock-avoidance procedure with a conditioned-suppression procedure used for comparison in two cases. The animals initially were unable to respond to sound, and the first signs of hearing appeared as late as 13 wk after surgery. Hearing levels improved gradually over time, with maximal recovery reached at 24-35 wk after surgery. Recovery was most pronounced for low frequencies (63-250 Hz) and very high frequencies (32 kHz), which generally returned to normal or near-normal levels. However, the monkeys appeared to have suffered a permanent hearing loss throughout most of their hearing range, especially in the midfrequency range, where they are normally most sensitive. A review of the animal literature reveals little support for the previous view that bilateral auditory cortex lesions have little or no effect on absolute sensitivity in primates and carnivores. Most previous studies did not conduct detailed hearing tests, and those that did often noted a hearing loss. The hearing loss found in monkeys is similar to that noted in human cases following bilateral auditory cortex lesions. The current findings thus provide experimental verification of the clinical phenomenon of cortical deafness.


Author(s):  
Edoardo Pinzuti ◽  
Patricia Wollsdtadt ◽  
Aaron Gutknecht ◽  
Oliver Tüscher ◽  
Michael Wibral

AbstractInformation transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate data in the computation of transfer entropy and entirely avoids filtering of the original signals. The approach thereby avoids well-known problems due to phase shifts or the ineffectiveness of filtering in the information theoretic setting. We also show that measuring frequency-resolved information transfer is a partial information decomposition problem that cannot be fully resolved to date and discuss the implications of this issue. Last, we evaluate the performance of our algorithm on simulated data and apply it to human magnetoencephalography (MEG) recordings and to local field potential recordings in the ferret. In human MEG we demonstrate top-down information flow in temporal cortex from very high frequencies (above 100Hz) to both similarly high frequencies and to frequencies around 20Hz, i.e. a complex spectral configuration of cortical information transmission that has not been described before. In the ferret we show that the prefrontal cortex sends information at low frequencies (4-8 Hz) to early visual cortex (V1), while V1 receives the information at high frequencies (> 125 Hz).Author SummarySystems in nature that perform computations typically consist of a large number of relatively simple but interacting parts. In human brains, for example, billions of neurons work together to enable our cognitive abilities. This well-orchestrated teamwork requires information to be exchanged very frequently. In many cases this exchange happens rhythmically and, therefore, it seems beneficial for our understanding of physical systems if we could link the information exchange to specific rhythms. We here present a method to determine which rhythms send, and which rhythms receive information. Since many rhythms can interact at both sender and receiver side, we show that the interpretation of results always needs to consider that the above problem is tightly linked to partial information decomposition - an intriguing problem from information theory only solved recently, and only partly. We applied our novel method to information transfer in the human inferior temporal cortex, a brain region relevant for object perception, and unexpectedly found information transfer originating at very high frequencies at 100Hz and then forking to be received at both similarly high but also much lower frequencies around 20Hz. These results overturn the current standard assumption that low frequencies send information to high frequencies.


Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 249-265
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

ABSTRACT The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.


1950 ◽  
Vol 1950 (8) ◽  
pp. 216-216
Author(s):  
R.G. Medhurst ◽  
S.D. Pool

1930 ◽  
Vol 68 (401) ◽  
pp. 556-559
Author(s):  
C.L. Fortescue ◽  
L.A. Moxon

1984 ◽  
Vol 160 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M Slaoui ◽  
O Leo ◽  
J Marvel ◽  
M Moser ◽  
J Hiernaux ◽  
...  

We have shown that, by suitable idiotypic manipulation, BALB/c mice can express the major cross-reactive idiotype (CRI) of A/J mice in response to azophenylarsonate (Ars). In order to know if the CRIA idiotype is present in the potential repertoire of BALB/c before any intentional selection, we used polyclonal activation in vitro and limiting dilution analysis. The readout was done with two monoclonal anti-CRIA antibodies that recognize distinct idiotopes on a CRIA+ A/J germline-encoded monoclonal antibody. We studied the frequency of CRIA+ lipopolysaccharide (LPS)-reactive cells in the spleens of nonimmune and immune A/J mice and in the spleens of naive and manipulated (i.e., producing CRIA+ antibodies) BALB/c mice. A/J and BALB/c naive individuals presented very high frequencies of Ars-specific B cells while the frequency of CRIA+ B cells was only a minor subset (0.5%) of the total Ars-specific subset in the two strains. When A/J mice were immunized with Ars-keyhole limpet hemocyanin, a clear preferential expansion of the CRIA+ minor subset of A/J mice was observed (100x). No such enhancement was observed in BALB/c mice similarly treated. Manipulated BALB/c mice presented a higher frequency of CRIA+ anti-Ars B cells than naive or antigen-immunized BALB/c individuals.


Sign in / Sign up

Export Citation Format

Share Document