Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications

Author(s):  
Luisa M Saavedra ◽  
Gonzalo S Saldías ◽  
Bernardo R Broitman ◽  
Cristian A Vargas

Abstract The increasing shellfish aquaculture requires knowledge about nearshore environmental variability to manage sustainably and create climate change adaptation strategies. We used data from mooring time series and in situ sampling to characterize oceanographic and carbonate system variability in three bivalve aquaculture areas located along a latitudinal gradient off the Humboldt Current System. Our results showed pHT <8 in most coastal sites and occasionally below 7.5 during austral spring–summer in the lower (−30°S) and central (−37°S) latitudes, related to upwelling. Farmed mussels were exposed to undersaturated (Ωarag < 1) and hypoxic (<2 ml l−1) waters during warm seasons at −37°S, while in the higher latitude (43°S) undersaturated waters were only detected during colder seasons, associated with freshwater runoff. We suggest that both Argopecten purpuratus farmed at −30°S and Mytilus chilensis farmed at −43°S may enhance their growth during summer due to higher temperatures, lower pCO2, and oversaturated waters. In contrast, Mytilus galloprovincialis farmed at 37°S grows better during spring–summer, following higher temperatures and high pCO2. This knowledge is relevant for aquaculture, but it must be improved using high-resolution time series and in situ experimentation with farmed species to aid their adaptation to climate change and ocean acidification.

2013 ◽  
Vol 19 (6) ◽  
pp. 1841-1853 ◽  
Author(s):  
Timothée Brochier ◽  
Vincent Echevin ◽  
Jorge Tam ◽  
Alexis Chaigneau ◽  
Katerina Goubanova ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lissette D. Paredes ◽  
Mauricio F. Landaeta ◽  
Carlos Molinet ◽  
M. Teresa González

AbstractMacro- and micro-environmental factors modulate parasite loads in fish, determining parasitic abundances, diversity, and interaction dynamics. In this study, seasonal variations in larval ectoparasites on fish larvae in the northern Humboldt Current System (HCS) were evaluated using a delta-gamma generalized linear model to predict their occurrence frequencies. Fish larvae were collected from two nearshore areas during austral spring–summer and autumn–winter. Only five (of 38) larval fish species were parasitized by copepods: Gobiesox marmoratus, Ophiogobius jenynsi, Helcogrammoides cunninghami, Myxodes sp., and Auchenionchus crinitus. A binomial model showed that the presence/absence of parasitized fish larvae varied among the fish species and their larval abundances, while a positive delta-gamma model showed that ectoparasite frequency varied among the seasons and fish species. Seasonal variations in parasitized fish larvae frequency could be associated with host and parasite reproductive processes, which are related to oceanographic features responsible for larval retention and subsequent higher infestation probabilities. Host length was positively correlated with ectoparasite length, suggesting early infection and combined growth until the detachment of the ectoparasite. Our results suggest that infestation patterns in larval fish species can be identified using delta-gamma models and that they respond to local (retention) and high-scale (HCS) processes.


2012 ◽  
Vol 9 (3) ◽  
pp. 1183-1194 ◽  
Author(s):  
E. Mayol ◽  
S. Ruiz-Halpern ◽  
C. M. Duarte ◽  
J. C. Castilla ◽  
J. L. Pelegrí

Abstract. Carbon dioxide and coupled CO2 and O2-driven compromises to marine life were examined along the Chilean sector of the Humboldt Current System, a particularly vulnerable hypoxic and upwelling area, applying the Respiration index (RI = log10 pO2pCO2) and the pH-dependent aragonite saturation (Ω) to delineate the water masses where aerobic and calcifying organisms are stressed. As expected, there was a strong negative relationship between oxygen concentration and pH or pCO2 in the studied area, with the subsurface hypoxic Equatorial Subsurface Waters extending from 100 m to about 300 m depth and supporting elevated pCO2 values. The lowest RI values, associated to aerobic stress, were found at about 200 m depth and decreased towards the Equator. Increased pCO2 in the hypoxic water layer reduced the RI values by as much as 0.59 RI units, with the thickness of the upper water layer that presents conditions suitable for aerobic life (RI>0.7) declining by half between 42° S and 28° S. The intermediate waters hardly reached those stations closer to the equator so that the increased pCO2 lowered pH and the saturation of aragonite. A significant fraction of the water column along the Chilean sector of the Humboldt Current System suffers from CO2–driven compromises to biota, including waters corrosive to calcifying organisms, stress to aerobic organisms or both. The habitat free of CO2-driven stresses was restricted to the upper mixed layer and to small water parcels at about 1000 m depth. Overall pCO2 acts as a hinge connecting respiratory and calcification challenges expected to increase in the future, resulting in a spread of the challenges to aerobic organisms.


Author(s):  
Martin Thiel ◽  
Erasmo Macaya ◽  
Enzo Acu√±a ◽  
Wolf Arntz ◽  
Horacio Bastias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document