upper mixed layer
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Sergey V. Vostokov ◽  
Anastasia S. Vostokova ◽  
Svetlana V. Vazyulya

Based on satellite data from the SeaWiFS, MODIS-Aqua, and MODIS-Terra scanners, the long-term dynamics of coccolithophores in the Black Sea and their large-scale heterogeneity have been studied. During the twenty years in May and June, mass development of coccolithophores population of different intensities was recorded annually. Summer blooms of coccolithophores reached peak levels in 2006, 2012, and 2017, after abnormally cold winters. It was noted that in conditions of low summer temperatures, the blooming of coccolithophores could be significantly reduced or acquire a local character (2004). In the anomalous cold summer of 2001, coccolithophore blooms were replaced by the mass growth of diatoms. Over twenty years, numerous signs of coccolithophores mass development in the cold season have been revealed. Winter blooms develop mainly in warm winters with periods of low wind activity. The formation of a thermocline and the surface layer’s stability are essential factors for initiating winter blooms of coccolithophores. It was noted that after the winter blooms of coccolithophores, their summer growth was poorly expressed. It is shown that during periods of rapid growth, the bulk of coccolithophores is concentrated in the upper mixed layer and thermocline. During the blooming period, the share of coccolithophores in phytoplankton biomass constituted 70–85%. The intensity of coccolithophore’s blooms is associated with the previous diatoms’ growth level. The effect of eddies circulation on the distribution and growth of coccolithophores is considered.


2021 ◽  
Author(s):  
Mhlangabezi Mdutyana ◽  
Tanya Marshall ◽  
Xin Sun ◽  
Jessica M. Burger ◽  
Sandy J. Thomalla ◽  
...  

Abstract. Across the Southern Ocean in winter, nitrification is the dominant mixed-layer nitrogen cycle process, with some of the nitrate produced therefrom persisting to fuel productivity during the subsequent growing season, potentially weakening the spring/summer biological CO2 sink. To better understand the controls on Southern Ocean nitrification, we conducted nitrite oxidation kinetics experiments in surface waters across the western Indian sector in winter. While all experiments (seven in total) yielded a Michaelis-Menten relationship with substrate concentration, the nitrite oxidation rates only increased substantially once the nitrite concentration exceeded 115±2.3 to 245±18 nM, suggesting that nitrite oxidizing bacteria (NOB) require a minimum (i.e., "threshold") nitrite concentration to produce nitrate. The half-saturation constant ranged from 134±8 to 403±24 nM, indicating a relatively high affinity of Southern Ocean NOB for nitrite, in contrast to results from culture experiments. Despite the high affinity of NOB for nitrite, its concentration rarely declines below 150 nM in the Southern Ocean's mixed layer, regardless of season. In the upper mixed layer, we measured ammonium oxidation rates that were two- to seven-fold higher than the coincident rates of nitrite oxidation, indicating that nitrite oxidation is the rate-limiting step for nitrification in the winter Southern Ocean. The decoupling of ammonium and nitrite oxidation, combined with a possible nitrite concentration threshold for NOB, may explain the non-zero nitrite that persists throughout the Southern Ocean's mixed layer year-round. We hypothesize that the apparent threshold nitrite requirement of NOB indicates nitrite undersaturation of the heme-rich nitrite oxidoreductase enzyme, perhaps driven by the limited availability of iron in surface waters.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
S. I. Kondratev ◽  
D. S. Khoruzhii ◽  
◽  

Purpose. The purpose of the study is to analyze the features of vertical distribution of phosphates and dissolved organic phosphorus (Porg) in the Black Sea at the present period. Methods and Results. The data obtained by the scientists of Marine Hydrophysical Institute in the Black Sea within the economic zone of Russia in 2016–2019 were used. At more than 200 deep-sea stations, a cassette of 12 bathometers (the Seabird-Electronics STD-instrument) was applied for taking hydrochemical samples at certain isopycnic surfaces, usually at σt = 16.30; 16.25; 16.20; 16.20; 16.15; 16.10; 16.05; 16.00; 15.95; 15.90; 15.80; 15.50, 14.0 kg/m3. At the coastal shallow-water stations, samples were taken at the 10 m intervals. Such a scheme permitted to carry out vertical sampling in the upper mixed layer and in the suboxic zone (including its upper boundary) with possible minimum of phosphates, to determine the depth of hydrogen sulfide formation and the location of the phosphates concentration maximum in the upper part of the anaerobic zone. Conclusions. From the surface to isopycn σt = 14.4 kg/m3, the content of phosphates and Porg does not exceed 0.1 µM; below this isopycnic surface, the phosphates concentration begins to increase, whereas of Porg remains at the same level. At all the profiles of the phosphates vertical distribution, the phosphates concentration minimum was recorded near the isopycnic surface σt = 15.8 kg/m3, and its maximum – near the isopycnic surface σt = 16.2 kg/m3. The minimum content of phosphates varied within 0–1.5 µM; in 2016–2017 the phosphates concentration maximum did not exceed 8 µM; in 2018, in many cases, it was higher than 12 µM, and once, near the Kerch Strait, it exceeded 17 µM. Increase in the magnitude of the maximum phosphates concentration (in the previous studies in 1988–2013, it did not exceed 8 µM) is assumed to be related to installation of the supports for constructing the Kerch Bridge.


Author(s):  
A.A. Valle ◽  
◽  
A.B. Polonsky ◽  

In our work, based on the archival data of observations carried out in 1955 – 2015, hydrological and hydrochemical characteristics in the 10–30 m layer in the northwestern shelf (NWS) of the Black Sea, including the Danube estuary area are analyzed. Intra-annual changes in dissolved oxygen and water temperature in the NWS and in the Danube estuary area are shown to have a well-pronounced seasonal character. Water temperature in the estuary area of the Danube is characterized by lower values in all seasons than in the NWS. Salinity at the horizons of 10 and 20 m in winter in the estuary area of the Danube is lower than in the NWS due to the freshening of the upper mixed layer by river runoff. In spring, resulting from increased river runoff, an increase in the stability of water stratification occurs, which prevents the spread of heat inland and vertical exchange of oxygen. The strongest freshening in the studied layer is established at the horizon of 10 m. In spring, the southerly winds “trap” river waters in the shallower part of the shelf, and westerly winds give rise to the spread of freshened waters to the east. The summer-autumn period is characterized by low intensity of vertical and horizontal water exchange, which reduces the flow of oxygen to the subsurface layers. Harmonic analysis shows that in the Danube estuary area and in the NWS, the annual signal is dominant for temperature, salinity and oxygen, except for salinity at the 30 m horizon in the estuary area of the Danube. The semiannual harmonic of salinity at 30 m in the estuarine area of the Danube is most likely related to both limited data availability and their noisiness.


2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Arianto Budi Santoso ◽  
Endra Triwisesa ◽  
Muh Fakhrudin

The revolutionized aquatic monitoring sensors are essential in capturing environmental patterns that traditional discrete samplings might not be able to. They allow scientists to further synthesize and better conclude processes in aquatic ecosystems. These sensors produce high-frequency data that provide information on a fine temporal scale, even near real-time. The massive quantities of the streamed data, however, create challenges for scientists to grasp the concrete information. Filtering data quality, on the other hand, is another problem scientists might have encountered as sensor accuracy and precision may drift along the line. Hence, quality assurance and quality control might be quite labouring owing to the size of datasets to handle. This paper proposed a semi-mechanistic algorithm to improved false water temperature data. Using “theoretical” thermal stratification as a reference, this algorithm fixed sensors error readings. A 5-month dataset of water temperature profiles of Lake Maninjau, West Sumatra, captured every 10 minutes from a set of sensors in thermistor chain was applied. We found that most data fit to the theoretical temperature profile, R<sup>2</sup> = 0.962, RMSE = 0.081<sup>o</sup>C. A number of errors, however, were observed in the upper layer of the lake (&lt;20 m), the most dynamic layer in terms of its thermal variation. Sensor drifts in this active upper mixed layer can be related to the generated errors. Through this simple solution, not only improving the quality of the observed water temperature data, but was also able to identify the most probable source of errors


2021 ◽  
Vol 8 ◽  
Author(s):  
Young-Gyu Park ◽  
Seongbong Seo ◽  
Dong Guk Kim ◽  
Joocheul Noh ◽  
Hyuk Min Park

At a coastal station near the southern coast of Korea, the vertical profiles of temperature salinity dissolved oxygen and velocity were obtained using a vertical profiler, Aqualog, every summer from 2016 to 2020. At the site, fishing activity was not allowed, and it was possible to maintain the profiler continuously and stably. It was set to travel every one or 2 h for two to 4 months. Thus, we were able to observe the variations of the water properties from hourly to monthly scales. The sensors were contaminated much less than we expected, and the data could be used without correction at least for our coastal applications. The main phenomena we observed are tides, coastal warming, fresh water, and responses to typhoons. On the daily time scale, the most prominent phenomenon is semi-diurnal tides, with which the thickness and temperature of coastal warm waters changed. The warm water also showed fluctuations between 10 and 15 days. The data also revealed that the tide showed strong seasonality. In summer, when the water is strongly stratified, the tidal current is baroclinic, while in winter, when the water is well mixed, the current is barotropic. Responses to typhoon induced winds were rather complicated. In one case, increase in the upper mixed layer was observed. The thick mixed layer disappeared in about a day due to advection. In another case the upper mixed layer became thinner, while the wind became stronger due the advection of the offshore water. Hydrographic observations conducted every 2 months, of course, or point measurement at a surface buoy could not show such continuous changes. More and more local fishermen are showing interest in oceanographic information, and data from the profiler could be of much use to them.


Author(s):  
A.B. Polonsky ◽  
◽  
P.A. Sukhonos ◽  

This article analyzes the reproducibility of the reemergence of temperature and upper mixed layer (UML) depth anomalies in the northeastern North Atlantic during severe weather conditions observed in the Atlantic-European region in the winter of 2009/2010 and 2010/2011. The data of re-analyzes ORA-S3, GFDL, GODAS, GLORYS2v4 and objective analyzes Ishii, EN4.1.1 are used. It is confirmed that the formation of the negative temperature anomaly in UML in winter 2010/2011 is largely due to the reemergence of the ocean temperature anomaly that occurred in the winter of 2009/2010. Interannual UML depth anomalies in the northeastern North Atlantic from the ORA-S3 and GODAS reanalysis datasets from March 2009 to November 2011 are in satisfactory agreement. The best description of the evolution of temperature anomalies in the 10–550 m layer in 2010, in accordance with the hypothesis of the reemergence of the ocean temperature anomaly, was obtained for the UML depth from the indicated data sets. An assessment of the statistical features of the case of the reemergence of anomalies in the UML characteristics at a significant level showed the occurrence of the UML depth anomaly in the winter of 2010/2011, formed in the last autumn-winter period. Moreover, such specific conditions could not have formed in the early 2000s.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

&lt;p&gt;The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.&lt;/p&gt;&lt;p&gt;The work was supported by grants of the RF President&amp;#8217;s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776).&amp;#160;&lt;/p&gt;&lt;p&gt;1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977&amp;#8211;2006.&lt;br&gt;2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.&lt;br&gt;3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.&lt;br&gt;4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press)&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Sergey Piontkovski ◽  
Khalid Al Hashmi ◽  
Yuliya Zagorodnaya ◽  
Irina Serikova ◽  
Vladislav Evstigneev ◽  
...  

&lt;p&gt;Seasonal variability is a powerful component of the spatio-temporal dynamics of plankton communities, especially in the regions with oxygen-depleted waters. The Arabian Sea and the Black Sea are typical representatives of these regions. In both, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid &amp; Swezy, 1921, is one of the abundant plankton species which forms algal blooms. Sampling on coastal stations in the upper mixed layer by the plankton nets with the 120-140 &amp;#181;m mesh size was carried out in 2004-2010. Monthly data were averaged over years. A comparison of seasonal patterns of Noctiluca abundance pointed to the persistence of a bimodal seasonal cycle in both regions. The major peak was observed during spring in the Black Sea and during the winter (Northeast) monsoon in the Arabian Sea. The timing of the second (minor) peak was different over regions as well. This peak was modulated by advection of seasonally fluctuating velocity of coastal currents which transport waters enriched by nutrients by coastal upwelling. The abundance of Noctiluca of the major peak (with the concentration around 1.5*10&lt;sup&gt;6&lt;/sup&gt; cells m&lt;sup&gt;-3&lt;/sup&gt;) was from one to two orders as much high in the western Arabian Sea compared to the northern Black Sea. The remotely sensed chlorophyll-a concentration during the time of the major seasonal peak exhibited a fivefold difference over these regions. In terms of nutrient&lt;sub&gt;&lt;/sub&gt;concentration in the upper mixed layer (in particular, nitrates and silicates), a difference of about one order of magnitude was observed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document