A Linear Time Algorithm for Bi-Connectivity Augmentation of Graphs with Upper Bounds on Vertex-Degree Increase

Author(s):  
T. FUKUOKA
2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Adrian Kosowski ◽  
Michal Malafiejski ◽  
Pawel Zyliński

International audience In our paper we consider the $P_3$-packing problem in subcubic graphs of different connectivity, improving earlier results of Kelmans and Mubayi. We show that there exists a $P_3$-packing of at least $\lceil 3n/4\rceil$ vertices in any connected subcubic graph of order $n>5$ and minimum vertex degree $\delta \geq 2$, and that this bound is tight. The proof is constructive and implied by a linear-time algorithm. We use this result to show that any $2$-connected cubic graph of order $n>8$ has a $P_3$-packing of at least $\lceil 7n/9 \rceil$ vertices.


2019 ◽  
Author(s):  
Md. Khaledur Rahman ◽  
M. Sohel Rahman

AbstractThe genome rearrangement problem computes the minimum number of operations that are required to sort all elements of a permutation. A block-interchange operation exchanges two blocks of a permutation which are not necessarily adjacent and in a prefix block-interchange, one block is always the prefix of that permutation. In this paper, we focus on applying prefix block-interchanges on binary and ternary strings. We present upper bounds to group and sort a given binary/ternary string. We also provide upper bounds for a different version of the block-interchange operation which we refer to as the ‘restricted prefix block-interchange’. We observe that our obtained upper bound for restricted prefix block-interchange operations on binary strings is better than that of other genome rearrangement operations to group fully normalized binary strings. Consequently, we provide a linear-time algorithm to solve the problem of grouping binary normalized strings by restricted prefix block-interchanges. We also provide a polynomial time algorithm to group normalized ternary strings by prefix block-interchange operations. Finally, we provide a classification for ternary strings based on the required number of prefix block-interchange operations.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2012 ◽  
Vol 160 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Fatemeh Keshavarz-Kohjerdi ◽  
Alireza Bagheri ◽  
Asghar Asgharian-Sardroud

Sign in / Sign up

Export Citation Format

Share Document