Deformation formulas and boundary control problems of first-order Volterra integro-differential equations with nonlocal boundary conditions

2012 ◽  
Vol 30 (3) ◽  
pp. 345-377 ◽  
Author(s):  
S.-I. Nakagiri
Author(s):  
Wei Jiang ◽  
Zhong Chen ◽  
Ning Hu ◽  
Yali Chen

AbstractIn recent years, the study of fractional differential equations has become a hot spot. It is more difficult to solve fractional differential equations with nonlocal boundary conditions. In this article, we propose a multiscale orthonormal bases collocation method for linear fractional-order nonlocal boundary value problems. In algorithm construction, the solution is expanded by the multiscale orthonormal bases of a reproducing kernel space. The nonlocal boundary conditions are transformed into operator equations, which are involved in finding the collocation coefficients as constrain conditions. In theory, the convergent order and stability analysis of the proposed method are presented rigorously. Finally, numerical examples show the stability, accuracy and effectiveness of the method.


2018 ◽  
Vol 21 (2) ◽  
pp. 423-441 ◽  
Author(s):  
Bashir Ahmad ◽  
Rodica Luca

AbstractWe study the existence of solutions for a system of nonlinear Caputo fractional differential equations with coupled boundary conditions involving Riemann-Liouville fractional integrals, by using the Schauder fixed point theorem and the nonlinear alternative of Leray-Schauder type. Two examples are given to support our main results.


2019 ◽  
Vol 22 (05) ◽  
pp. 1950031
Author(s):  
José Luiz Boldrini ◽  
Exequiel Mallea-Zepeda ◽  
Marko Antonio Rojas-Medar

Certain classes of optimal boundary control problems for the Boussinesq equations with variable density are studied. Controls for the velocity vector and temperature are applied on parts of the boundary of the domain, while Dirichlet and Navier friction boundary conditions for the velocity and Dirichlet and Robin boundary conditions for the temperature are assumed on the remaining parts of the boundary. As a first step, we prove a result on the existence of weak solution of the dynamical equations; this is done by first expressing the fluid density in terms of the stream-function. Then, the boundary optimal control problems are analyzed, and the existence of optimal solutions are proved; their corresponding characterization in terms of the first-order optimality conditions are obtained. Such optimality conditions are rigorously derived by using a penalty argument since the weak solutions are not necessarily unique neither isolated, and so standard methods cannot be applied.


Sign in / Sign up

Export Citation Format

Share Document