A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation

2001 ◽  
Vol 21 (4) ◽  
pp. 919-931 ◽  
Author(s):  
T. E. Simos
2000 ◽  
Vol 11 (04) ◽  
pp. 785-807 ◽  
Author(s):  
P. S. WILLIAMS ◽  
T. E. SIMOS

Fourth order exponential and trigonometric fitted Runge–Kutta methods are developed in this paper. They are applied to problems involving the Schrödinger equation and to other related problems. Numerical results show the superiority of these methods over conventional fourth order Runge–Kutta methods. Based on the methods developed in this paper, a variable-step algorithm is proposed. Numerical experiments show the efficiency of the new algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yanwei Zhang ◽  
Haitao Che ◽  
Yonglei Fang ◽  
Xiong You

A new trigonometrically fitted fifth-order two-derivative Runge-Kutta method with variable nodes is developed for the numerical solution of the radial Schrödinger equation and related oscillatory problems. Linear stability and phase properties of the new method are examined. Numerical results are reported to show the robustness and competence of the new method compared with some highly efficient methods in the recent literature.


2000 ◽  
Vol 11 (06) ◽  
pp. 1115-1133 ◽  
Author(s):  
T. E. SIMOS

An embedded Runge–Kutta method with phase-lag of order infinity for the numerical integration of Schrödinger equation is developed in this paper. The methods of the embedded scheme have algebraic orders five and four. Theoretical and numerical results obtained for radial Schrödinger equation and for coupled differential equations show the efficiency of the new methods.


1996 ◽  
Vol 11 (26) ◽  
pp. 4731-4744 ◽  
Author(s):  
T. E. SIMOS ◽  
P. S. WILLIAMS

Some new modified Runge–Kutta methods with minimal phase lag are developed for the numerical solution of the eigenvalue Schrödinger equation and related problems with oscillating solutions. These methods are based on the very well-known Runge–Kutta method of order 4. For the numerical solution of the eigenvalue Schrödinger equation, we investigate two cases: (i) the specific case in which the potential V(x) is an even function with respect to x; it is assumed, also, that the wave functions tend to zero for x → ±∞; (ii) the general case for the well-known cases of the Morse potential and Woods–Saxon or optical potential. Also, we have applied the new methods to some well-known problems with oscillatory solutions. Numerical and theoretical results show that this new approach is more efficient than the well-known classical fourth order Runge–Kutta method and the Numerov method.


1999 ◽  
Vol 10 (05) ◽  
pp. 839-851 ◽  
Author(s):  
T. E. SIMOS ◽  
P. S. WILLIAMS

Exponentially and trigonometrically fitted third algebraic order Runge–Kutta methods for the numerical integration of the Schrödinger equation are developed in this paper. Numerical results obtained for several well known problems show the efficiency of the new methods.


Sign in / Sign up

Export Citation Format

Share Document