Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations

Author(s):  
Huadong Gao ◽  
Weiwei Sun ◽  
Chengda Wu

Abstract This paper is concerned with optimal error estimates and recovery technique of a classical mixed finite element method for the thermistor problem, which is governed by a parabolic/elliptic system with strong nonlinearity and coupling. The method is based on a popular combination of the lowest-order Raviart–Thomas mixed approximation for the electric potential/field $(\phi , \boldsymbol{\theta })$ and the linear Lagrange approximation for the temperature $u$. A common question is how the first-order approximation influences the accuracy of the second-order approximation to the temperature in such a strongly coupled system, while previous work only showed the first-order accuracy $O(h)$ for all three components in a traditional way. In this paper, we prove that the method produces the optimal second-order accuracy $O(h^2)$ for $u$ in the spatial direction, although the accuracy for the potential/field is in the order of $O(h)$. And more importantly, we propose a simple one-step recovery technique to obtain a new numerical electric potential/field of second-order accuracy. The analysis presented in this paper relies on an $H^{-1}$-norm estimate of the mixed finite element methods and analysis on a nonclassical elliptic map. We provide numerical experiments in both two- and three-dimensional spaces to confirm our theoretical analyses.

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 128
Author(s):  
Shahid Hussain ◽  
Afshan Batool ◽  
Md. Al Mahbub ◽  
Nasrin Nasu ◽  
Jiaping Yu

In this article, a stabilized mixed finite element (FE) method for the Oseen viscoelastic fluid flow (OVFF) obeying an Oldroyd-B type constitutive law is proposed and investigated by using the Streamline Upwind Petrov–Galerkin (SUPG) method. To find the approximate solution of velocity, pressure and stress tensor, we choose lowest-equal order FE triples P 1 - P 1 - P 1 , respectively. However, it is well known that these elements do not fulfill the i n f - s u p condition. Due to the violation of the main stability condition for mixed FE method, the system becomes unstable. To overcome this difficulty, a standard stabilization term is added in finite element variational formulation. The technique is applied herein possesses attractive features, such as parameter-free, flexible in computation and does not require any higher-order derivatives. The stability analysis and optimal error estimates are obtained. Three benchmark numerical tests are carried out to assess the stability and accuracy of the stabilized lowest-equal order feature of the OVFF.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jinfeng Wang ◽  
Hong Li ◽  
Siriguleng He ◽  
Wei Gao ◽  
Yang Liu

We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient∇ubelongs to the weaker(L2(Ω))2space taking the place of the classicalH(div;Ω)space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates inL2andH1-norm for both the scalar unknownuand the diffusion termw=−Δuand a priori error estimates in(L2)2-norm for its gradientχ=∇ufor both semi-discrete and fully discrete schemes.


Sign in / Sign up

Export Citation Format

Share Document