Approximation of minimal surfaces with free boundaries: convergence results

2018 ◽  
Vol 39 (3) ◽  
pp. 1391-1420
Author(s):  
Tristan Jenschke

Abstract In a previous paper we developed a penalty method to approximate solutions of the free boundary problem for minimal surfaces by solutions of certain variational problems depending on a parameter $\lambda $. There we showed existence and $C^2$-regularity of these solutions as well as convergence to the solution of the free boundary problem for $\lambda \to \infty $. In this paper we develop a fully discrete finite element procedure for approximating solutions of these variational problems and prove a convergence estimate, which includes an order of convergence with respect to the grid size.

2016 ◽  
Vol 09 (06) ◽  
pp. 1650080
Author(s):  
Mei Li

This paper is concerned with a system of semilinear parabolic equations with two free boundaries describing the spreading fronts of the invasive species in a mutualistic ecological model. The local existence and uniqueness of a classical solution are obtained and the asymptotic behavior of the free boundary problem is studied. Our results indicate that two free boundaries tend monotonically to finite or infinite limits at the same time, and the free boundary problem admits a global slow solution with unbounded free boundaries if the intra-specific competitions are strong, while if the intra-specific competitions are weak, there exist the blowup solution and global fast solution.


2016 ◽  
Vol 23 (1) ◽  
pp. 195-215 ◽  
Author(s):  
François Bouchon ◽  
Gunther H. Peichl ◽  
Mohamed Sayeh ◽  
Rachid Touzani

A free boundary problem for the Stokes equations governing a viscous flow with over-determined condition on the free boundary is investigated. This free boundary problem is transformed into a shape optimization one which consists in minimizing a Kohn–Vogelius energy cost functional. Existence of the material derivatives of the states is proven and the corresponding variational problems are derived. Existence of the shape derivative of the cost functional is also proven and the analytic expression of the shape derivative is given in the Hadamard structure form.


The numerical solution of free boundary problems gives rise to many computational difficulties. One such difficulty is due to the singularity at the separation point between the fixed and free boundaries. A method is suggested which uses complex variable techniques to determine the shape of the free boundary near to the separation point. This complex variable solution is also used to improve the accuracy of the finite-difference solution in the neighbourhood of the singularity. The analytical study was incorporated into an algorithm for the numerical solution of a particular free boundary problem concerning the percolation of a fluid through a porous dam. Some numerical results for this problem are presented.


Sign in / Sign up

Export Citation Format

Share Document