The Plateau Problem and the Partially Free Boundary Problem for Minimal Surfaces

Author(s):  
Ulrich Dierkes ◽  
Stefan Hildebrandt ◽  
Albrecht Küster ◽  
Ortwin Wohlrab
2018 ◽  
Vol 39 (3) ◽  
pp. 1391-1420
Author(s):  
Tristan Jenschke

Abstract In a previous paper we developed a penalty method to approximate solutions of the free boundary problem for minimal surfaces by solutions of certain variational problems depending on a parameter $\lambda $. There we showed existence and $C^2$-regularity of these solutions as well as convergence to the solution of the free boundary problem for $\lambda \to \infty $. In this paper we develop a fully discrete finite element procedure for approximating solutions of these variational problems and prove a convergence estimate, which includes an order of convergence with respect to the grid size.


MAT Serie A ◽  
2001 ◽  
Vol 5 ◽  
pp. 37-41
Author(s):  
Claudia Lederman ◽  
Juan Luis Vázquez ◽  
Noemí Wolanski

2008 ◽  
Vol 05 (04) ◽  
pp. 785-806
Author(s):  
KAZUAKI NAKANE ◽  
TOMOKO SHINOHARA

A free boundary problem that arises from the physical phenomenon of "peeling a thin tape from a domain" is treated. In this phenomenon, the movement of the tape is governed by a hyperbolic equation and is affected by the peeling front. We are interested in the behavior of the peeling front, especially, the phenomenon of self-excitation vibration. In the present paper, a mathematical model of this phenomenon is proposed. The cause of this vibration is discussed in terms of adhesion.


Sign in / Sign up

Export Citation Format

Share Document