scholarly journals Quasi-optimal and pressure-robust discretizations of the Stokes equations by new augmented Lagrangian formulations

2019 ◽  
Vol 40 (4) ◽  
pp. 2553-2583
Author(s):  
Christian Kreuzer ◽  
Pietro Zanotti

Abstract We approximate the solution of the stationary Stokes equations with various conforming and nonconforming inf-sup stable pairs of finite element spaces on simplicial meshes. Based on each pair, we design a discretization that is quasi-optimal and pressure-robust, in the sense that the velocity $H^1$-error is proportional to the best velocity $H^1$-error. This shows that such a property can be achieved without using conforming and divergence-free pairs. We also bound the pressure $L^2$-error, only in terms of the best velocity $H^1$-error and the best pressure $L^2$-error. Our construction can be summarized as follows. First, a linear operator acts on discrete velocity test functions, before the application of the load functional, and maps the discrete kernel into the analytical one. Second, in order to enforce consistency, we employ a new augmented Lagrangian formulation, inspired by discontinuous Galerkin methods.

2019 ◽  
Vol 53 (2) ◽  
pp. 503-522 ◽  
Author(s):  
Philip L. Lederer ◽  
Christoph Lehrenfeld ◽  
Joachim Schöberl

The present work is the second part of a pair of papers, considering Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity. The first part mainly dealt with presenting a robust analysis with respect to the mesh size h and the introduction of a reconstruction operator to restore divergence-conformity and pressure robustness (pressure independent velocity error estimates) using a modified force discretization. The aim of this part is the presentation of a high order polynomial robust analysis for the relaxed H(div)-conforming Hybrid Discontinuous Galerkin discretization of the two dimensional Stokes problem. It is based on the recently proven polynomial robust LBB-condition for BDM elements, Lederer and Schöberl (IMA J. Numer. Anal. (2017)) and is derived by a direct approach instead of using a best approximation Céa like result. We further treat the impact of the reconstruction operator on the hp analysis and present a numerical investigation considering polynomial robustness. We conclude the paper presenting an efficient operator splitting time integration scheme for the Navier–Stokes equations which is based on the methods recently presented in Lehrenfeld and Schöberl (Comp. Methods Appl. Mech. Eng. 307 (2016) 339–361) and includes the ideas of the reconstruction operator.


Sign in / Sign up

Export Citation Format

Share Document