scholarly journals Backward Shift and Nearly Invariant Subspaces of Fock-type Spaces

Author(s):  
Alexandru Aleman ◽  
Anton Baranov ◽  
Yurii Belov ◽  
Haakan Hedenmalm

Abstract We study the structure of the backward shift invariant and nearly invariant subspaces in weighted Fock-type spaces ${\mathcal{F}}_W^p$, whose weight is not necessarily radial. We show that in the spaces ${\mathcal{F}}_W^p$, which contain the polynomials as a dense subspace (in particular, in the radial case), all nontrivial backward shift invariant subspaces are of the form $\mathcal{P}_n$, that is, finite-dimensional subspaces consisting of polynomials of degree at most $n$. In general, the structure of the nearly invariant subspaces is more complicated. In the case of spaces of slow growth (up to zero exponential type), we establish an analogue of de Branges’ ordering theorem. We then construct examples that show that the result fails for general Fock-type spaces of larger growth.

2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Junquan Song ◽  
Yujian Ye ◽  
Danda Zhang ◽  
Jun Zhang

Conditional Lie-Bäcklund symmetry approach is used to study the invariant subspace of the nonlinear diffusion equations with sourceut=e−qx(epxP(u)uxm)x+Q(x,u),m≠1. We obtain a complete list of canonical forms for such equations admit multidimensional invariant subspaces determined by higher order conditional Lie-Bäcklund symmetries. The resulting equations are either solved exactly or reduced to some finite-dimensional dynamic systems.


1985 ◽  
Vol 22 (02) ◽  
pp. 461-466
Author(s):  
Valeri T. Stefanov

Let {Xt } t≧0 (t may be discrete or continuous) be a random process whose finite-dimensional distributions are of exponential type. The first-passage time inf{t:Xt ≧f(t)}, where f(t) is a positive, continuous function, such that f(t)= o(t) as t↑∞, is considered. The problem of finiteness of its moments is solved for both the case that {Xt } t≧0 has stationary independent increments as well as the case in which no assumptions are made about stationarity and independence for the increments of the process. Applications to sequential estimation are also given.


2019 ◽  
Vol 19 (2) ◽  
pp. 239-261 ◽  
Author(s):  
Nguyen Lam ◽  
Guozhen Lu ◽  
Lu Zhang

AbstractThe main purpose of this paper is to prove several sharp singular Trudinger–Moser-type inequalities on domains in {\mathbb{R}^{N}} with infinite volume on the Sobolev-type spaces {D^{N,q}(\mathbb{R}^{N})}, {q\geq 1}, the completion of {C_{0}^{\infty}(\mathbb{R}^{N})} under the norm {\|\nabla u\|_{N}+\|u\|_{q}}. The case {q=N} (i.e., {D^{N,q}(\mathbb{R}^{N})=W^{1,N}(\mathbb{R}^{N})}) has been well studied to date. Our goal is to investigate which type of Trudinger–Moser inequality holds under different norms when q changes. We will study these inequalities under two types of constraint: semi-norm type {\|\nabla u\|_{N}\leq 1} and full-norm type {\|\nabla u\|_{N}^{a}+\|u\|_{q}^{b}\leq 1}, {a>0}, {b>0}. We will show that the Trudinger–Moser-type inequalities hold if and only if {b\leq N}. Moreover, the relationship between these inequalities under these two types of constraints will also be investigated. Furthermore, we will also provide versions of exponential type inequalities with exact growth when {b>N}.


Sign in / Sign up

Export Citation Format

Share Document