scholarly journals Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO−1

Author(s):  
Pierre Germain ◽  
Nataša Pavlović ◽  
Gigliola Staffilani
2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Bernard Nowakowski ◽  
Gerhard Ströhmer

AbstractWe investigate the existence and regularity of solutions to the stationary Stokes system and non-stationary Navier–Stokes equations in three dimensional bounded domains with in- and out-lets. We assume that on the in- and out-flow parts of the boundary the pressure is prescribed and the tangential component of the velocity field is zero, whereas on the lateral part of the boundary the fluid is at rest.


Author(s):  
James C. Robinson

There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier–Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


2008 ◽  
Vol 20 (06) ◽  
pp. 625-706 ◽  
Author(s):  
CARLO MOROSI ◽  
LIVIO PIZZOCCHERO

In our previous paper [12], a general framework was outlined to treat the approximate solutions of semilinear evolution equations; more precisely, a scheme was presented to infer from an approximate solution the existence (local or global in time) of an exact solution, and to estimate their distance. In the first half of the present work, the abstract framework of [12] is extended, so as to be applicable to evolutionary PDEs whose nonlinearities contain derivatives in the space variables. In the second half of the paper, this extended framework is applied to the incompressible Navier–Stokes equations, on a torus Td of any dimension. In this way, a number of results are obtained in the setting of the Sobolev spaces ℍn(Td), choosing the approximate solutions in a number of different ways. With the simplest choices we recover local existence of the exact solution for arbitrary data and external forces, as well as global existence for small data and forces. With the supplementary assumption of exponential decay in time for the forces, the same decay law is derived for the exact solution with small (zero mean) data and forces. The interval of existence for arbitrary data, the upper bounds on data and forces for global existence, and all estimates on the exponential decay of the exact solution are derived in a fully quantitative way (i.e. giving the values of all the necessary constants; this makes a difference with most of the previous literature). Next, the Galerkin approximate solutions are considered and precise, still quantitative estimates are derived for their ℍn distance from the exact solution; these are global in time for small data and forces (with exponential time decay of the above distance, if the forces decay similarly).


Sign in / Sign up

Export Citation Format

Share Document