scholarly journals Classical Aspects of Quantum Cohomology of Generalized Flag Varieties

2011 ◽  
Vol 2012 (16) ◽  
pp. 3706-3722 ◽  
Author(s):  
Naichung Conan Leung ◽  
Changzheng Li
1999 ◽  
Vol 351 (7) ◽  
pp. 2695-2729 ◽  
Author(s):  
Ionuţ Ciocan-Fontanine

2021 ◽  
Vol 157 (6) ◽  
pp. 1172-1206
Author(s):  
Alexander Kuznetsov ◽  
Maxim Smirnov

In our previous paper we suggested a conjecture relating the structure of the small quantum cohomology ring of a smooth Fano variety of Picard number 1 to the structure of its derived category of coherent sheaves. Here we generalize this conjecture, make it more precise, and support it by the examples of (co)adjoint homogeneous varieties of simple algebraic groups of Dynkin types $\mathrm {A}_n$ and $\mathrm {D}_n$ , that is, flag varieties $\operatorname {Fl}(1,n;n+1)$ and isotropic orthogonal Grassmannians $\operatorname {OG}(2,2n)$ ; in particular, we construct on each of those an exceptional collection invariant with respect to the entire automorphism group. For $\operatorname {OG}(2,2n)$ this is the first exceptional collection proved to be full.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Elizabeth Drellich

International audience A Peterson variety is a subvariety of the flag variety $G/B$ defined by certain linear conditions. Peterson varieties appear in the construction of the quantum cohomology of partial flag varieties and in applications to the Toda flows. Each Peterson variety has a one-dimensional torus $S^1$ acting on it. We give a basis of Peterson Schubert classes for $H_{S^1}^*(Pet)$ and identify the ring generators. In type A Harada-Tymoczko gave a positive Monk formula, and Bayegan-Harada gave Giambelli's formula for multiplication in the cohomology ring. This paper gives a Chevalley-Monk rule and Giambelli's formula for all Lie types.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Elizabeth Beazley ◽  
Anna Bertiger ◽  
Kaisa Taipale

International audience A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the quantum product in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provide a way to compute quantum products of Schubert classes in the Grassmannian of $k$-planes in complex $n$-space by doing classical multiplication and then applying a combinatorial rimhook rule which yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which there is also an action of the complex torus. Combining this result with Knutson and Tao's puzzle rule provides an effective algorithm for computing the equivariant quantum Littlewood-Richardson coefficients. Interestingly, this rule requires a specialization of torus weights that is tantalizingly similar to maps in affine Schubert calculus. Une question importante dans la cohomologie quantique des variétés de drapeaux est de trouver des formules positives non récursives pour exprimer le produit quantique dans une base particulièrement bonne, appelée la base de Schubert. Bertram, Ciocan-Fontanine et Fulton donnent une façon de calculer les produits quantiques de classes de Schubert dans la Grassmannienne de $k$-plans dans l’espace complexe de dimension $n$ en faisant la multiplication classique et appliquant une règle combinatoire “rimhook” qui donne le paramètre quantique. Dans cet article, nous donnons une généralisation de ce règle rimhook au contexte où il y a aussi une action du tore complexe. Combiné avec la règle “puzzle” de Knutson et Tao, cela donne une algorithme effective pour calculer les coefficients équivariants de Littlewood-Richard. Il est intéressant d'observer que cette règle demande une spécialisation des poids du tore qui est similaire d’une manière tentante aux applications dans le calcul de Schubert affiné.


2021 ◽  
Vol 384 ◽  
pp. 107695
Author(s):  
Madeline Brandt ◽  
Christopher Eur ◽  
Leon Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document