TOTAL POSITIVITY, FLAG VARIETIES AND QUANTUM COHOMOLOGY

Author(s):  
KONSTANZE RIETSCH
2011 ◽  
Vol 2012 (16) ◽  
pp. 3706-3722 ◽  
Author(s):  
Naichung Conan Leung ◽  
Changzheng Li

2021 ◽  
Vol 157 (6) ◽  
pp. 1172-1206
Author(s):  
Alexander Kuznetsov ◽  
Maxim Smirnov

In our previous paper we suggested a conjecture relating the structure of the small quantum cohomology ring of a smooth Fano variety of Picard number 1 to the structure of its derived category of coherent sheaves. Here we generalize this conjecture, make it more precise, and support it by the examples of (co)adjoint homogeneous varieties of simple algebraic groups of Dynkin types $\mathrm {A}_n$ and $\mathrm {D}_n$ , that is, flag varieties $\operatorname {Fl}(1,n;n+1)$ and isotropic orthogonal Grassmannians $\operatorname {OG}(2,2n)$ ; in particular, we construct on each of those an exceptional collection invariant with respect to the entire automorphism group. For $\operatorname {OG}(2,2n)$ this is the first exceptional collection proved to be full.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Elizabeth Drellich

International audience A Peterson variety is a subvariety of the flag variety $G/B$ defined by certain linear conditions. Peterson varieties appear in the construction of the quantum cohomology of partial flag varieties and in applications to the Toda flows. Each Peterson variety has a one-dimensional torus $S^1$ acting on it. We give a basis of Peterson Schubert classes for $H_{S^1}^*(Pet)$ and identify the ring generators. In type A Harada-Tymoczko gave a positive Monk formula, and Bayegan-Harada gave Giambelli's formula for multiplication in the cohomology ring. This paper gives a Chevalley-Monk rule and Giambelli's formula for all Lie types.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Rachel Karpman

International audience The positroid decomposition of the Grassmannian refines the well-known Schubert decomposition, and has a rich combinatorial structure. There are a number of interesting combinatorial posets which index positroid varieties,just as Young diagrams index Schubert varieties. In addition, Postnikov’s boundary measurement map gives a family of parametrizations for each positroid variety. The domain of each parametrization is the space of edge weights of a weighted planar network. The positroid stratification of the Grassmannian provides an elementary example of Lusztig’s theory of total non negativity for partial flag varieties, and has remarkable applications to particle physics.We generalize the combinatorics of positroid varieties to the Lagrangian Grassmannian, the moduli space of maximal isotropic subspaces with respect to a symplectic form


Sign in / Sign up

Export Citation Format

Share Document