scholarly journals PSXI-5 Profiling of transcriptome responses of the intestinal epithelium to starch hydrolysate direct infusion using RNA-seq technology.

2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 425-425
Author(s):  
C Li ◽  
R Baldwin
2021 ◽  
Author(s):  
Colin R Lickwar ◽  
James M Davison ◽  
Cecelia Kelly ◽  
Gilberto Padilla Mercado ◽  
Jia Wen ◽  
...  

To preserve its physiologic functions, the intestine must interpret and adapt to complex combinations of stimuli from dietary and microbial sources. However, the transcriptional strategies by which the intestinal epithelium integrates and adapts to dietary and microbial information remains unresolved. We compared adult mice reared germ free (GF) or conventionalized with a microbiota (CV) either fed normally or after a single high-fat meal (HFM). Jejunal epithelium preparations were queried using genomewide assays for RNA-seq, the activating histone mark H3K27ac ChIP-seq, and ChIP-seq of the microbially-responsive transcription factor HNF4A. We identified distinct nutritional and microbial responses at certain genes, but also apparent simultaneous influence of both stimuli at many other loci and regulatory regions. Increased expression levels and H3K27ac enrichment following HFM at a subset of these sites was dependent on microbial status. H3K27ac sites that were preferentially increased by HFM in the presence of microbes neighbor lipid anabolism and proliferation genes as well as intestinal stem cell (ISC) markers, were usually active only in ISCs, and were not HNF4A targets. In contrast, H3K27ac sites that were preferentially increased by HFM in the absence of microbes neighbored targets of the nuclear receptor and energy homeostasis regulator PPARA, were frequently accessible only in enterocytes, and were HNF4A bound. These results reveal that HNF4A supports a differentiated enterocyte and FAO program in GF, and that suppression of HNF4A by the combination of microbes and HFM may result in preferential activation of IEC proliferation programs. Microbial and nutritional responses are therefore integrated with some of the same transcriptional programs that regulate intestinal proliferation and differentiation.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


2018 ◽  
Author(s):  
Andressa Harumi Torelli Hijo ◽  
Francemilson Goulart-Silva

2008 ◽  
Vol 21 (1) ◽  
pp. 61-65
Author(s):  
Wiktor Czarnecki ◽  
Piotr Belniak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document