proliferation and differentiation
Recently Published Documents


TOTAL DOCUMENTS

5395
(FIVE YEARS 1210)

H-INDEX

148
(FIVE YEARS 14)

2022 ◽  
Vol 12 (3) ◽  
pp. 588-596
Author(s):  
Ming Xu ◽  
Guo Yong Tan ◽  
Xian Ming Tao

The major feature of spinal cord injury (SCI) was the damage of nervous tissue in spinal cord. The damaged spinal cord was difficult to be repaired and regenerated. MicroRNA-124 could play a role in the repairing and recovering the injured tissue. The BMSCs could participate in repairing the damage. However, the regulatory effect of MicroRNA-124 on BMSCs and the inflammatory response of SCI was still not illustrated. These spinal cord nerve cells were assigned into group of mechanical damage, BMSCs and BMSCs with miR-124 overexpression followed by analysis of proliferation of nerve cells by MTT assay, apoptotic activity, expression of miR-124, GFAP and BDNF by Real time PCR, levels of TNF-α and IL-6 by ELISA as well as MDH and SOD activity. miR-124 mimics transfection significantly promoted BMSCs proliferation and increased ALK activity and the expression of GFAP and BDNF. In conclusion, the proliferation and differentiation of BMSCs could be regulated by miR-124. The inflammation and oxidative stress could be restrained so as to prompt the proliferation and repair of SCI cells and restrain apoptosis, indicating that it might be beneficial to recover the SCI.


2022 ◽  
Vol 12 (5) ◽  
pp. 958-963
Author(s):  
Fei Gao ◽  
Xiaoming Wu ◽  
Zhao Guo ◽  
Jianzhong Wang ◽  
Wenshan Gao ◽  
...  

This study explored whether teriparatide promotes BMSCs proliferation and differentiation via downregulating miR-298 and provided a basis for bone repair. Based on the microarray analysis after teriparatide treatment, qRT-PCR verified the differentially expressed miRNAs and the osteogenic differentiation was assessed by transfection of miRNA overexpression plasmids and miRNA inhibitors. miRNA array analysis and qRT-PCR verification showed that miR-298 was significantly downregulated during teriparatide-induced BMSCs differentiation. miR-298 overexpression significantly inhibited ALP and OPN expression which was promoted by transfection of miR-298 inhibitor. miR-298 is a negative regulator of BMSCs differentiation induced by teriparatide. Dlx5 is the target of miR-298. Inhibition of DLX5 expression by miR-298 was involved in the osteogenic differentiation of BMSCs. In conclusion, miR-298 negatively regulates the differentiation of BMSCs induced by teriparatide by targeting DLX5, providing a possible therapeutic target for bone tissue repair and regeneration.


2022 ◽  
Vol 12 (3) ◽  
pp. 480-488
Author(s):  
Shaoying Liu ◽  
Chengying Zhang ◽  
Jing Hao ◽  
Yuna Liu ◽  
Sidao Zheng ◽  
...  

Mesenchymal stem cells (MSCs) are the excellent candidates in myocardial regeneration given their easy accessibility, low immunogenicity and high potential for cardiomyocyte differentiation. This work focused on investigating the role of icariin, a main active component of the Traditional Chinese herb epimedium, in human bone marrow-derived MSCs (BMSCs) proliferation and differentiation into cardiomyocytes In Vitro. Human BMSCs were cultivated In Vitro, and MTT assay was conducted to measure their proliferation. On this basis, we selected the optimal icariin dose for promoting the proliferation to induce cardiomyocyte differentiation of MSCs, which were pretreated with or without 5-azacytidine (5-Aza). Cardiac-specific cardiac troponin I (cTnI) and connexin 43 (Cx43)-positive cells were detected by immunofluorescent staining. The differentiation ratio of MSCs was examined by flow cytometry. This study measured early cardiac transcription factors (TFs) Nkx2.5 and GATA4 levels through RT-PCR and Western blotting (WB). As a result, icariin increased MSC proliferation dependent on its dose, and the optimal dose was determined to be 80 μg/l. Furthermore, MSCs showed minimal cardiomyogenic differentiation when induced by icariin alone as confirmed by the expression of cardiac-related markers. Moreover, a synergic interaction was observed when icariin and 5-Aza cooperated to induce cardiomyocyte differentiation of MSCs. In conclusion, Icariin stimulates proliferation and facilitates cardiomyocyte differentiation of MSCs In Vitro and may be potentially used as a new method for enhancing the MSCs efficacy in cardiovascular disease.


2022 ◽  
Author(s):  
Wenguang Yin ◽  
Andreas Liontos ◽  
Janine Koepke ◽  
Maroua Ghoul ◽  
Luciana Mazzocchi ◽  
...  

The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (Hh) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a new, autocrine function of Hh signaling in airway epithelial cells. Epithelial cell depletion of the ligand Sonic hedgehog (SHH) or its effector Smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, Hh signaling inhibition also hampers cell proliferation and differentiation. Epithelial Hh function is mediated, at least in part, through transcriptional activation as Hh signaling inhibition leads to downregulation of cell-type specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of Hh signaling in epithelial cell proliferation and differentiation during airway development.


2022 ◽  
Author(s):  
Jimmy Hom ◽  
Theodoros Karnavas ◽  
Emily Hartman ◽  
Julien Papoin ◽  
Yuefeng Tang ◽  
...  

Ribosomopathies are a class of disorders caused by defects in the structure or function of the ribosome and characterized by tissue-specific abnormalities. Diamond Blackfan anemia (DBA) arises from different mutations, predominantly in genes encoding ribosomal proteins (RPs). Apart from the anemia, skeletal defects are among the most common anomalies observed in patients with DBA, but they are virtually restricted to radial ray and other upper limb defects. What leads to these site-specific skeletal defects in DBA remains a mystery. Using a novel mouse model for RP haploinsufficiency, we observed specific, differential defects of the limbs. Using complementary in vitro and in vivo approaches, we demonstrate that reduced WNT signaling and subsequent increased β-catenin degradation in concert with increased expression of p53 contribute to mesenchymal lineage failure. We observed differential defects in the proliferation and differentiation of mesenchymal stem cells (MSCs) from the forelimb versus the hind limbs of the RP haploinsufficient mice that persisted after birth and were partially rescued by allelic reduction of Trp53. These defects are associated with a global decrease in protein translation in RP haploinsufficient MSCs, with the effect more pronounced in cells isolated from the forelimbs. Together these results demonstrate translational differences inherent to the MSC, explaining the site-specific skeletal defects observed in DBA.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262576
Author(s):  
Jiahui Xu ◽  
Gale M. Strasburg ◽  
Kent M. Reed ◽  
Sandra G. Velleman

Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Yan Zhao ◽  
Hongling Peng

Epigenetics is identified as the study of heritable modifications in gene expression and regulation that do not involve DNA sequence alterations, such as DNA methylation, histone modifications, etc. Importantly, N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications of eukaryotic messenger RNA (mRNA), which plays a key role in various cellular processes. It can not only mediate various RNA metabolic processes such as RNA splicing, translation, and decay under the catalytic regulation of related enzymes but can also affect the normal development of bone marrow hematopoiesis by regulating the self-renewal, proliferation, and differentiation of pluripotent stem cells in the hematopoietic microenvironment of bone marrow. In recent years, numerous studies have demonstrated that m6A methylation modifications play an important role in the development and progression of hematologic malignancies (e.g., leukemia, lymphoma, myelodysplastic syndromes [MDS], multiple myeloma [MM], etc.). Targeting the inhibition of m6A-associated factors can contribute to increased susceptibility of patients with hematologic malignancies to therapeutic agents. Therefore, this review elaborates on the biological characteristics and normal hematopoietic regulatory functions of m6A methylation modifications and their role in the pathogenesis of hematologic malignancies.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shimao Yang ◽  
Fei Gao ◽  
Min Li ◽  
Zhennan Gao

In literature, antiosteoporotic effects of Angelica sinensis root have been confirmed, but the impact of Angelica sinensis polysaccharide (ASP) on osteoblastic or adipogenic distinction of BMSCs is limited. This paper aimed to explore the role of ASP on proliferation and differentiation of rat BMSCs. Rat BMSCs were subjected to isolation and identification through flow cytometry. The proliferation of rat BMSCs under ASP was performed by CCK-8 kit. Measures of osteogenesis under different concentrations of ASP were detected by using alizarin red staining for mesenchymal cells differentiation and ALP activity assay to identify ALP activity. Quantitative RT-PCR was selected to identify osteoblastic or adipogenic biomarkers from a genetic perspective. Likewise, we have evaluated measures of indicators of Wnt/β-catenin signal. ASP significantly promoted the proliferation, increased osteogenesis, and decreased adipogenesis of rat BMSCs within the limit of 20–60 mg/L in a dose-dependent manner but was suppressed at 80 mg/L. The expression of cyclin D1 and ß-catenin showed a considerable rise over the course of ASP induced osteogenesis. Dickkopf 1 (DKK1) suppressed the regulation of rat BMSCs differentiation through the mediation of ASP. We have observed that ASP upregulated the osteogenic but downregulated adipogenic differentiation of BMSCs, and our findings help to contribute to effective solutions for treating bone disorders.


2022 ◽  
Vol 25 ◽  
pp. 69-76
Author(s):  
Leyla Anari ◽  
Davood Mehrabani ◽  
Mahboobeh Nasiri ◽  
Shahrokh Zare ◽  
Iman Jamhiri ◽  
...  

Purpose: Among abused substances, methamphetamine is a psychostimulant drug widely used recreationally with public health importance. This study investigated the effect of methamphetamine on proliferation, differentiation, and apoptosis of human adipose tissue stem cells (AdSCs). Methods: AdSCs were isolated from human abdominal adipose tissue and were characterized for mesenchymal properties and growth kinetics. MTT assay was undertaken to assess methamphetamine toxicity on proliferation and differentiation properties and apoptosis of hAdSCs. Results: Isolated cells were shown to have mesenchymal properties and a population doubling time (PDT) of 40.1 h. Following methamphetamine treatment, expressions of KI-67 and TPX2 as proliferation genes and Col1A1 and PPARg as differentiation genes decreased. Methamphetamine administration increased the expression of Bax and decreased Bcl-2 genes responsible for apoptosis. Conclusions: Our data suggested when AdSCs were exposed to methamphetamine, it decreased proliferation and differentiation properties of stem cells together with an increase in apoptosis. These findings can be added to the literature, especially when methamphetamine is used recreationally for weight loss purposes.


Sign in / Sign up

Export Citation Format

Share Document