energy homeostasis
Recently Published Documents


TOTAL DOCUMENTS

2802
(FIVE YEARS 1012)

H-INDEX

132
(FIVE YEARS 19)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Ewelina Wardzinski ◽  
Kamila Jauch-Chara ◽  
Sarah Haars ◽  
Uwe Melchert ◽  
Harald Scholand-Engler ◽  
...  

Obesity and mobile phone usage have simultaneously spread worldwide. Radio frequency-modulated electromagnetic fields (RF-EMFs) emitted by mobile phones are largely absorbed by the head of the user, influence cerebral glucose metabolism, and modulate neuronal excitability. Body weight adjustment, in turn, is one of the main brain functions as food intake behavior and appetite perception underlie hypothalamic regulation. Against this background, we questioned if mobile phone radiation and food intake may be related. In a single-blind, sham-controlled, randomized crossover comparison, 15 normal-weight young men (23.47 ± 0.68 years) were exposed to 25 min of RF-EMFs emitted by two different mobile phone types vs. sham radiation under fasting conditions. Spontaneous food intake was assessed by an ad libitum standard buffet test and cerebral energy homeostasis was monitored by 31phosphorus-magnetic resonance spectroscopy measurements. Exposure to both mobile phones strikingly increased overall caloric intake by 22–27% compared with the sham condition. Differential analyses of macronutrient ingestion revealed that higher calorie consumption was mainly due to enhanced carbohydrate intake. Measurements of the cerebral energy content, i.e., adenosine triphosphate and phosphocreatine ratios to inorganic phosphate, displayed an increase upon mobile phone radiation. Our results identify RF-EMFs as a potential contributing factor to overeating, which underlies the obesity epidemic. Beyond that, the observed RF-EMFs-induced alterations of the brain energy homeostasis may put our data into a broader context because a balanced brain energy homeostasis is of fundamental importance for all brain functions. Potential disturbances by electromagnetic fields may therefore exert some generalized neurobiological effects, which are not yet foreseeable.


2022 ◽  
Vol 23 (2) ◽  
pp. 917
Author(s):  
Mónika Gönczi ◽  
Andrea Csemer ◽  
László Szabó ◽  
Mónika Sztretye ◽  
János Fodor ◽  
...  

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


2022 ◽  
Author(s):  
Sanjay Kumar ◽  
Aaron Ramonett ◽  
Tasmia Ahmed ◽  
Euna Kwak ◽  
Paola Cruz Flores ◽  
...  

Mitochondrial remodeling is a fundamental process underlying cellular respiration and metabolism. Here we report TAK1 as a direct regulator of mitochondrial fusion. TAK1 is activated by a variety of mitogenic factors, cytokines and environmental stimuli, which we find induces rapid fragmentation through Mfn2 inactivation. TAK1 phosphorylates Mfn2 at Ser249, which inhibits the binding of GTP required for Mfn trans-dimerization and mitochondrial membrane fusion. Accordingly, expression of Mfn2-S249 phosphomimetics (Mfn2-E/D) constitutively promote fission whereas alanine mutant (Mfn2-A) yields hyperfused mitochondria and increased bioenergetics in cells. In mice, Mfn2-E knock-in yields embryonic lethality in homozygotes whereas heterozygotes are viable but exhibit increased visceral fat accumulation despite normal body weight and cognitive/motor functions compared to wildtype and Mfn2-A mice. Mature white adipocytes isolated from mutant mice reveal cell-autonomous TAK1-related effects on mitochondrial remodeling and lipid metabolism. These results identify Mfn2-S249 as a dynamic phosphoregulatory switch of mitochondrial fusion during development and energy homeostasis.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Xi Cao ◽  
Tingting Shi ◽  
Chuanhai Zhang ◽  
Wanzhu Jin ◽  
Lini Song ◽  
...  

Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice (Ace2-/y) and Mas1 knockout mice (Mas1-/-) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1-/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Leprdb/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Zeve ◽  
Eric Stas ◽  
Joshua de Sousa Casal ◽  
Prabhath Mannam ◽  
Wanshu Qi ◽  
...  

AbstractEnteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


2022 ◽  
Author(s):  
Gwendoline Astre ◽  
Tehila Atlan ◽  
Uri Goshtchevsky ◽  
Kobi Shapira ◽  
Adi Oron-Gottesman ◽  
...  

The loss of energy homeostasis seen during aging, is causally linked to multiple age-related pathologies. The AMP-activated protein kinase (AMPK) directly senses cellular energy levels, which are reflected in the ratio between AMP:ATP. However, the genetic regulation of vertebrate aging by the AMPK pathway remains poorly understood. Here, we manipulate ATP production by mutating APRT, a key enzyme in AMP biosynthesis, and extend vertebrate lifespan in a male-specific manner. Using a multi-omics approach, we demonstrate that the APRT mutation restores metabolic plasticity, and identify a distinct transcriptional signature linking mitochondria with the sex-related differences in longevity. Accordingly, APRT mutant cells display a reduction in mitochondrial functions and ATP levels, and an increase in AMPK activity, resembling a persistent state of energy starvation. In-vivo, a fasting-like response was observed exclusively in male mutants, including resistance to a high-fat diet. Finally, intermittent fasting eliminated the longevity benefits mediated by the APRT mutation in males. Together, these data identify AMP biosynthesis as a sex-specific mediator of vertebrate longevity and metabolic health.


2022 ◽  
Author(s):  
Shashank Kumar Maurya ◽  
Rajnikant Mishra

Abstract Many transcription factors play important roles to maintain the microenvironment, integrity of the blood-brain barrier, the neurons-glia interaction, activities of microglia, composition of cerebrospinal fluid, metabolic activities, concentration of neurotransmitters, presence of inflammatory and anti-inflammatory cytokines, ischemia, stress, aging, neurological disorders, and diseases. The Paired box transcription factors and multifunctional proteins, Pax6 and Pax5 are expressed in brain. They regulate several regulators from cell cycle to cell death. The Pax5, a B-cell lineage-specific activator protein (BSAP), is expressed in the cerebellum, cerebral cortex, hippocampus, olfactory bulb, third ventricles, and choroid plexus. The Pax5 has been observed down-regulated in autism, mental retardation, and Glioblastoma multiforme. The Pax6 affects genes of neurodegeneration, immunological surveillance, and energy homeostasis in brain of mice. The Pax5 and Pax6 recognize several similar DNA sequences and regulate the expression of genes in a tissue-specific manner. Therefore, it is presumed that Pax5 and Pax6, are compartmentalized in brain of mice. Results indicate interactions, cell and tissue-specific compartmentalization, and co-localization of Pax5 and Pax6 in the cerebral cortex, cerebellum, and hippocampus in brain of mice.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Eirini Lionaki ◽  
Christina Ploumi ◽  
Nektarios Tavernarakis

One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Bernd Coester ◽  
Thomas A. Lutz ◽  
Christelle Le Foll

Amylin and leptin synergistically interact in the arcuate nucleus of the hypothalamus (ARC) to control energy homeostasis. Our previous rodent studies suggested that amylin-induced interleukin-6 release from hypothalamic microglia may modulate leptin signaling in agouti-related peptide expressing neurons. To confirm the physiological relevance of this finding, the calcitonin receptor (CTR) subunit of the amylin receptor was selectively depleted in microglia by crossing tamoxifen (Tx) inducible Cx3cr1-CreERT2 mice with CTR-floxed mice. Unexpectedly, male mice with CTR-depleted microglia (KO) gained the least amount of weight of all groups regardless of diet. However, after correcting for the tamoxifen effect, there was no significant difference for body weight, fat mass or lean mass between genotypes. No alteration in glucose tolerance or insulin release was detected. However, male KO mice had a reduced respiratory quotient suggesting a preference for fat as a fuel when fed a high fat diet. Importantly, amylin-induced pSTAT3 was decreased in the ARC of KO mice but this was not reflected in a reduced anorectic response. On the other hand, KO mice seemed to be less responsive to leptin’s anorectic effect while displaying similar ARC pSTAT3 as Tx-control mice. Together, these data suggest that microglial amylin signaling is not a major player in the control of energy homeostasis in mice.


Sign in / Sign up

Export Citation Format

Share Document