scholarly journals The Work In The United States Against The Pink Bollworm

1919 ◽  
Vol 12 (2) ◽  
pp. 166-175
Author(s):  
W. D. Hunter
2020 ◽  
Vol 118 (1) ◽  
pp. e2019115118
Author(s):  
Bruce E. Tabashnik ◽  
Leighton R. Liesner ◽  
Peter C. Ellsworth ◽  
Gopalan C. Unnithan ◽  
Jeffrey A. Fabrick ◽  
...  

Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world’s most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacteriumBacillus thuringiensis(Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest’s population size. In Arizona, the program started in 2006 and decreased the pest’s estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.


2012 ◽  
Vol 3 (3) ◽  
pp. 194-200 ◽  
Author(s):  
Bruce E. Tabashnik ◽  
Shai Morin ◽  
Gopalan C. Unnithan ◽  
Alex J. Yelich ◽  
Christa Ellers-Kirk ◽  
...  

2019 ◽  
Vol 112 (6) ◽  
pp. 2513-2523 ◽  
Author(s):  
Bruce E Tabashnik ◽  
Yves Carrière

Abstract Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have advanced pest control, but their benefits have been reduced by evolution of resistance in pests. The global monitoring data reviewed here reveal 19 cases of practical resistance to Bt crops, which is field-evolved resistance that reduces Bt crop efficacy and has practical consequences for pest control. Each case represents the responses of one pest species in one country to one Bt toxin. The results with pink bollworm (Pectinophora gossypiella) and Bt cotton differ strikingly among the world’s three leading cotton-producing nations. In the southwestern United States, farmers delayed resistance by planting non-Bt cotton refuges from 1996 to 2005, then cooperated in a program that used Bt cotton, mass releases of sterile moths, and other tactics to eradicate this pest from the region. In China, farmers reversed low levels of pink bollworm resistance to Bt cotton by planting second-generation hybrid seeds from crosses between Bt and non-Bt cotton. This approach yields a refuge of 25% non-Bt cotton plants randomly interspersed within fields of Bt cotton. Farmers adopted this tactic voluntarily and unknowingly, not to manage resistance, but apparently because of its perceived short-term agronomic and economic benefits. In India, where non-Bt cotton refuges have been scarce and pink bollworm resistance to pyramided Bt cotton producing Cry1Ac and Cry2Ab toxins is widespread, integrated pest management emphasizing shortening of the cotton season, destruction of crop residues, and other tactics is now essential.


2019 ◽  
Vol 76 (2) ◽  
pp. 527-533 ◽  
Author(s):  
Jintao Wang ◽  
Dong Xu ◽  
Ling Wang ◽  
Shengbo Cong ◽  
Peng Wan ◽  
...  

1975 ◽  
Vol 37 (2) ◽  
pp. 641-642 ◽  
Author(s):  
Paul T. David

Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


Sign in / Sign up

Export Citation Format

Share Document