Resistance of Soybean Plant Introductions to Three Colonies of Soybean Aphid (Hemiptera: Aphididae) Biotype 4

2019 ◽  
Vol 112 (5) ◽  
pp. 2407-2417 ◽  
Author(s):  
Sophia R Conzemius ◽  
Louis S Hesler ◽  
Adam J Varenhorst ◽  
Kelley J Tilmon

Abstract Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), infestations of soybean, Glycine max (L.) Merr. (Fabales: Fabaceae), and the associated yield loss have led to a large dependence on insecticidal management in soybean throughout the Midwestern United States. However, several populations of pyrethroid-resistant soybean aphids have recently been found in Iowa, Minnesota, North Dakota and South Dakota, which highlights the importance of alternative management approaches. One such alternative method is host-plant resistance, which uses naturally occurring plant defenses in crop cultivars to reduce the potential for yield loss from a pest population. Current soybean aphid-resistant cultivars do not protect against all soybean aphids due to the presence of virulent biotypes. In particular, soybean aphid biotype 4 is virulent to Rag1 and Rag2 resistance genes both individually and in combination. However, we hypothesized that resistance to biotype 4 may exist in previously identified, but uncharacterized resistant soybean plant introductions (PIs). To test this, we evaluated 51 previously identified but uncharacterized soybean aphid-resistant PIs for their resistance to colonies of soybean aphid biotype 4 collected in separate site-years (Lomira, WI 2013; Volga, SD 2015, 2016). Free-choice tests identified 14 PIs with putative resistance to ‘Lomira13’, two to ‘Volga15’, and eight to ‘Volga16’ soybean aphid colonies. Follow-up, no-choice tests corroborated two to three resistant PIs per colony, and PI 437696, which was resistant to each of the three colonies and could aid in breeding efforts and an integrated approach to soybean aphid management.

Author(s):  
Raman Bansal ◽  
M A Rouf Mian ◽  
Andy Michel

Abstract Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.


2014 ◽  
Vol 200 (3) ◽  
pp. 231-236 ◽  
Author(s):  
S. M. Pathan ◽  
J.-D. Lee ◽  
D. A. Sleper ◽  
F. B. Fritschi ◽  
R. E. Sharp ◽  
...  

2017 ◽  
Vol 130 (7) ◽  
pp. 1335-1348 ◽  
Author(s):  
Curtis B. Hill ◽  
Derek Shiao ◽  
Carolyn M. Fox ◽  
Glen L. Hartman

2013 ◽  
Vol 127 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Carolyn M. Fox ◽  
Ki-Seung Kim ◽  
Perry B. Cregan ◽  
Curtis B. Hill ◽  
Glen L. Hartman ◽  
...  

2016 ◽  
Vol 8 (3) ◽  
pp. 1720-1730
Author(s):  
Sorabh Chaudhary ◽  
Sushma Sagar ◽  
Akash Tomar ◽  
R. S. Sengar ◽  
Mukesh Kumar

Maize (Zea mays L.) crop is attacked by number of fungal, bacterial and viral diseases, out of which banded leaf and sheath blight (BLSB) caused by anastomosis group 1-IA of Rhizoctonia solani f. sp. sasakii Exner. is one of the most widespread and destructive disease of maize in Southeast Asian countries. The occurrence of this disease has also been reported from other parts of the world, which causes significant yield loss up to 100%. R. solani can survive in the soil for several years and able to infect plants belonging to more than 32 families, including many economically important monocots and dicots plants. The severity of the disease favoured by humid weather with temperature around 28°C, poses challenge to maize growers due to its soil borne nature and lack of resistance cultivars. It is indicated that none of the disease management approaches are effective against BLSB. Banded leaf and sheath blight is difficult to control through either fungicide or crop rotation alone. A number of quantitative trait loci (QTLs) controlling BLSB have been identified that would help the development of maize hybrids resistance to this disease. Management of BLSB requires an integrated approach based on the knowledge of each stage of the disease and molecular aspect of maize defence responses against R. solani. Mention conclusion statement and novelty of the work. The present review summarizes consolidated information on distribution, yield loss, symptoms, pathogen life cycle, epidemiology, genetic structure of the pathogen population, molecular aspect of pathogenicity and its integrated management through cultural, biological, chemical and genetic means. The consolidated knowledge presented in this review should help better disease management and reduce crop yield loss due to banded leaf and sheath blight pathogen.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 784 ◽  
Author(s):  
E. A. Kabelka ◽  
B. W. Diers ◽  
W. R. Fehr ◽  
A. R. LeRoy ◽  
I. C. Baianu ◽  
...  

Author(s):  
S J Bhusal ◽  
R L Koch ◽  
A J Lorenz

Abstract Soybean aphid (Aphis glycines Matsumura (Hemiptera: Aphididae)) has been a major pest of soybean in North America since its detection in this continent in 2000 and subsequent spread. Although several aphid resistance genes have been identified, at least four soybean aphid biotypes have been discovered, with three of them being virulent on soybean cultivars with certain soybean aphid resistance genes. These biotypes are known to vary across years and locations, but information on their variation within single fields is limited. An investigation was conducted to study the variation of soybean aphid biotypes within single townships and fields in Minnesota. Screening of 28 soybean aphid isolates collected from seven soybean fields (six soybean fields in Cairo and Wellington Townships of Renville County, MN and one field in Wilmar Township of Kandiyohi County, MN) revealed the existence of multiple known biotypes of soybean aphid within single fields of soybean. We found up to three biotypes of soybean aphid in a single field. Two biotypes were found in five fields while only one field had only a single biotype. Three isolates presented reactions on a panel of resistant and susceptible indicator lines that were different from known biotypes. These results highlight the importance of characterizing soybean aphid biotypes in small geographical areas and utilizing generated knowledge to develop soybean cultivars pyramided with multiple resistance genes. The outcome will be decreased use of insecticides, thereby improving economic and environmental sustainability of soybean production.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Kaitlin M. Chapman ◽  
Lia Marchi-Werle ◽  
Thomas E. Hunt ◽  
Tiffany M. Heng-Moss ◽  
Joe Louis

2011 ◽  
Vol 136 (5) ◽  
pp. 361-371 ◽  
Author(s):  
N. A. Tinsley ◽  
K. L. Steffey ◽  
R. E. Estes ◽  
J. R. Heeren ◽  
M. E. Gray ◽  
...  

Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 784-791 ◽  
Author(s):  
E. A. Kabelka ◽  
B. W. Diers ◽  
W. R. Fehr ◽  
A. R. LeRoy ◽  
I. C. Baianu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document