aphis glycines matsumura
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 25 (1) ◽  
pp. 98
Author(s):  
Jurnal Perlindungan Tanaman Indonesia

This is a correction to: Biology and the Statistic Demographic of Aphis glycines Matsumura (Hemiptera: Aphididae) on the Soybean with Plant Growth Promoting Rhizobacteria (PGPR) Treatment. Jurnal Perlindungan Tanaman Indonesia, 24(1), 54‒60. https://doi.org/10.22146/jpti.49846 In Author’s affiliation, typed as:Hermanu Triwidodo1)*, Anggun Agustini1),  & Listihani1)1)Department of Plant Protection, Faculty of Agriculture, IPB UniversityJln. Kamper, Kampus IPB Dramaga, Bogor, West Java 16680 IndonesiaTherefore, the Author’s affiliation was corrected to:Hermanu Triwidodo1)*, Anggun Agustini1), & Listihani2)1)Department of Plant Protection, Faculty of Agriculture, IPB UniversityJln. Kamper, Kampus IPB Dramaga, Bogor, West Java 16680 Indonesia2)Faculty of Agriculture and Business, University of Mahasaraswati DenpasarJln. Kamboja No.11 A, Dangin Puri Kangin, Denpasar Utara, Bali 80233 Indonesia The editorial staff apologizes for the inconvenience. The online version of the corrected manuscript has been published in the open journal system of the Jurnal Perlindungan Tanaman Indonesia.


Author(s):  
S J Bhusal ◽  
R L Koch ◽  
A J Lorenz

Abstract Soybean aphid (Aphis glycines Matsumura (Hemiptera: Aphididae)) has been a major pest of soybean in North America since its detection in this continent in 2000 and subsequent spread. Although several aphid resistance genes have been identified, at least four soybean aphid biotypes have been discovered, with three of them being virulent on soybean cultivars with certain soybean aphid resistance genes. These biotypes are known to vary across years and locations, but information on their variation within single fields is limited. An investigation was conducted to study the variation of soybean aphid biotypes within single townships and fields in Minnesota. Screening of 28 soybean aphid isolates collected from seven soybean fields (six soybean fields in Cairo and Wellington Townships of Renville County, MN and one field in Wilmar Township of Kandiyohi County, MN) revealed the existence of multiple known biotypes of soybean aphid within single fields of soybean. We found up to three biotypes of soybean aphid in a single field. Two biotypes were found in five fields while only one field had only a single biotype. Three isolates presented reactions on a panel of resistant and susceptible indicator lines that were different from known biotypes. These results highlight the importance of characterizing soybean aphid biotypes in small geographical areas and utilizing generated knowledge to develop soybean cultivars pyramided with multiple resistance genes. The outcome will be decreased use of insecticides, thereby improving economic and environmental sustainability of soybean production.


Author(s):  
Raman Bansal ◽  
M A Rouf Mian ◽  
Andy Michel

Abstract Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.


2020 ◽  
Vol 24 (1) ◽  
pp. 54
Author(s):  
Hermanu Triwidodo ◽  
Anggun Agustini ◽  
Listihani Listihani

Plant Growth Promoting Rhizobacteria (PGPR) applied to different plants may suppress pests population developments. This research was to study the capability of a commercial PGPR product contained Bacillus polymyxa and Pseudomonas fluorescens in suppressing population developments of Aphis glycines Matsumura (Hemiptera: Aphididae). The biology and demographic statistics of A. glycines reared on soybean with and without the PGPR applications were compared. The PGPR suspensions of 5 g formulation per liter water were used to soak soybean seed for 15 minutes and to water soybean plant 2 weeks after transplanting. Cohorts of 65 first instar A. glycines of each treatment were observed daily and individual mortality, molting, and fecundity were recorded until the last individual dead. Second instar stadium of A. glycines reared on treated plant lasted longer than those reared on untreated plant, i.e. 1.4 and 1.1 days, respectively. These resulted on a longer life cycle for A. glycines reared on treated plant than on untreated plant, i.e. 4.9 and 4.5 days, respectively. In turn, it caused the A. glycines population to experienceslower growth on treated plants than on untreated plants.  The values of A. glycines GRR, Ro, rm, T and DT on treated plants were 71.834, 57.780, 0.557, 7.287 and 1.245, consecutively; whilst that of untreated plants were 104.861, 63.326, 0.586, 7.084 and 1.184, respectively.


2020 ◽  
Vol 113 (4) ◽  
pp. 1591-1608 ◽  
Author(s):  
Henrique Pozebon ◽  
Rafael P Marques ◽  
Guilherme Padilha ◽  
Matthew O´Neal ◽  
Ivair Valmorbida ◽  
...  

Abstract Soybean production in Brazil has been markedly affected by invasions of non-native arthropod species that feed on the crop, severely impacting biodiversity, food security, health, and economic development. Data on soybean production losses and increase in insecticide usage over the last two decades have not been explored in association with past invasion events, and the dynamics underlying the recent blitz of invasive species into Brazil remain largely unclear. We provide a review of arthropod invasions in the Brazilian soybean agroecosystem since 1990, indicating that the introductions of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), Tetranychus urticae (Koch) (Acari: Tetranychidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are likely correlated with periods of increase in insecticide usage for soybean production. Using these three cases as examples, we review factors that could lead to increased likelihood of future invasions by particular pests, outlining four possible criteria to evaluate potential invasiveness of non-native arthropods: likelihood of entry, likelihood of establishment, biological features of the species, and availability of control measures. Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Aphis glycines (Matsumura) (Hemiptera: Sternorrhynca) are examples of highly damaging soybean pests, related to one or more of these factors, that could be introduced into Brazil over the next years and which could lead to problematic scenarios. Melanagromyza sojae (Zehnter) (Diptera: Agromyzidae) also meets these criteria and has successfully invaded and colonized Brazilian soybean fields in recent years. Our review identifies current issues within soybean pest management in Brazil and highlights the need to adopt management measures to offset future costs and minimize lost revenue.


2020 ◽  
Vol 113 (2) ◽  
pp. 932-939 ◽  
Author(s):  
James Menger ◽  
Patrick Beauzay ◽  
Anitha Chirumamilla ◽  
Cole Dierks ◽  
John Gavloski ◽  
...  

Abstract Soybean aphid, Aphis glycines Matsumura, remains the most economically damaging arthropod pest of soybean in the midwestern United States and southern Canada. Foliar applications of a limited number of insecticide modes of action have been the primary management tactic, and pyrethroid resistance was documented recently with full concentration–response leaf-dip and glass-vial bioassays. Full concentration–response bioassays can be cumbersome, and a more efficient assessment tool was needed. In this study, we implemented a diagnostic-concentration glass-vial bioassay using bifenthrin and λ-cyhalothrin. Bioassays were conducted with field-collected soybean aphid populations to assess the geographic extent and severity of resistance to pyrethroids. In 2017, 10 of 18 and 11 of 21 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. In 2018, 17 of 23 and 13 of 23 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. Populations collected after reported field failures of a pyrethroid insecticide generally had mean proportion mortalities less than the susceptible laboratory population. In both years, there was a strong correlation between chemistries, which suggests cross-resistance between these insecticides. The diagnostic-concentration glass-vial bioassays reported here will provide the foundation for an insecticide resistance monitoring program with the ability to determine practical levels and geographic extent of insecticide resistance.


2019 ◽  
Vol 113 (2) ◽  
pp. 940-948
Author(s):  
Ashley N Dean ◽  
Shelby Pritchard ◽  
John C Tyndall ◽  
Erin W Hodgson ◽  
Matthew E O’Neal

Abstract Farmers face many choices when selecting seed for soybean (Glycine max (L.) Merr.) production, including highly desired herbicide tolerance traits. Despite the convenience of herbicide tolerance, resistant weeds and technology fees may reduce utility and profitability of these varieties, especially when commodity prices are low. Sporadic outbreaks of soybean aphid (Aphis glycines Matsumura, Hemiptera: Aphididae) that require insecticide use for optimal yield can be a further complication for farmers in Iowa. Soybean aphid-resistant varieties are commercially available, but in limited genetic backgrounds without herbicide tolerance. We hypothesized yield and value of resistance traits will vary based on the environment. We established plots at two locations with different risks of soybean aphid outbreaks and used two planting dates at each location to mimic different yield environments. In 2016 and 2017, we planted four varieties that varied in their susceptibility to soybean aphids and glyphosate, and applied insecticides if aphid populations reached an economic threshold. Regardless of genetic background, aphid-resistant varieties prevented populations from reaching the economic threshold at all environments. We observed no significant difference in yield between resistant and susceptible varieties, revealing this trait is as effective at protecting yield as an insecticide application on susceptible varieties at the high-risk location. We also explored the value of each variety in different environments. Resistant varieties produced greater potential net revenue than susceptible varieties at the high-risk location, while the opposite occurred at the low-risk location. Resistant varieties with herbicide tolerance, if made available, would be the most valuable across all environments.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 374 ◽  
Author(s):  
Surendra Neupane ◽  
Jordan M Purintun ◽  
Febina M Mathew ◽  
Adam J Varenhorst ◽  
Madhav P Nepal

Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.


Sign in / Sign up

Export Citation Format

Share Document