detached leaf
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 3)

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Mengpei Liu ◽  
Hye-Young Seo ◽  
Sunggi Min ◽  
Kang-Mo Ku

Glucosinolates, lipid-soluble vitamins E and K contents, primary metabolites and plant hormones were analyzed from topped radish root and detached leaf during storage at 1 °C. The topped root was analyzed at 0, 5, 15, 30, and 90 days after storage while the detached leaf was analyzed at 0, 5, 15, 30, and 45 days in an airtight storage atmosphere environment. The results showed that aliphatic glucosinolates were gradually decreased in leaf but not in root. There was a highly significant correlation between tryptophan and 4-methoxyindoleglucobrassicin in both tissues (r = 0.922, n = 10). There was no significant difference in vitamins E and K in leaf and root during storage. Plant hormones partially explained the significantly changed metabolites by tissue and time, which were identified during cold storage. Phenylalanine, lysine, tryptophan, and myo-inositol were the most important biomarkers that explained the difference in leaf and root tissue during cold storage. The most different metabolism between leaf and root tissue was starch and sucrose metabolism. Therefore, different postharvest technology or regimes should be applied to these tissues.


2021 ◽  
Vol 53 (4) ◽  
pp. 737-748
Author(s):  
A. Daryanto ◽  
M. Syukur ◽  
Sobir ◽  
A. Maharijaya ◽  
P. Hidayat

The cotton aphid (Aphis gossypii), is one of the most devastating insect pests for chili pepper that damages the crop and transmits several viruses. Thus far, there is no commercial chili cultivar with effective resistance to cotton aphids (CA). The present study aimed to develop a reliable and practical screening protocol in chili peppers for aphids resistance in the tropical areas. Three no-choice test methods i.e., seedling cage, detached leaf, and clip cage tests have been developed. The experiment was conducted in a randomized complete block design (RCBD) with four replications in a greenhouse at the Gunung Putri, Bogor, West Java, Indonesia. Seven chili pepper genotypes belong to the species Capsicum annuum L. provided by the Department of Agronomy and Horticulture, IPB University, Bogor, Indonesia were used in this study. Chili pepper resistance to aphids was observed through the number of aphids progeny, and aphids fecundity among the genotypes. Two chili genotypes consistently showed low infestation while other genotypes showed the highest infestation with three screening methods. All the methods have a high heritability value (90%–91%), indicating that the evaluated chili genotypes could be used to determine effective screening methods. The correlation between the detached leaf and clip cage tests was significant (r = 0.84, P ≤ 0.05). Therefore, the clip cage test could be used as a reliable and practical screening test for the assay of chili peppers resistance to CA infestation. These information will be helpful in the development of aphid resistant cultivars in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Jiang ◽  
Kai Li ◽  
Junyi Gai

Soybean mosaic virus (SMV) is a prevalent pathogen of soybean (Glycine max). Pyramiding multiple SMV-resistance genes into one individual is tedious and difficult, and even if successful, the obtained multiple resistance might be broken by pathogen mutation, while targeting viral genome via host-induced gene silencing (HIGS) has potential to explore broad-spectrum resistance (BSR) to SMV. We identified five conserved target fragments (CTFs) from S1 to S5 using multiple sequence alignment of 30 SMV genome sequences and assembled the corresponding target-inverted-repeat constructs (TIRs) from S1-TIR to S5-TIR. Since the inefficiency of soybean genetic transformation hinders the function verification of batch TIRs in SMV-resistance, the Nicotiana benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS pathosystems combined with Agrobacterium-mediated transient expression assays were invented and used to test the efficacy of these TIRs. From that, S1-TIR assembled from 462 bp CTF-S1 with 92% conservation rate performed its best on inhibiting SMV multiplication. Accordingly, S1-TIR was transformed into SMV-susceptible soybean NN1138-2, the resistant-healthy transgenic T1-plants were then picked out via detached-leaf inoculation assay with the stock-plants continued for progeny reproduction (T1 dual-utilization). All the four T3 transgenic progenies showed immunity to all the inoculated 11 SMV strains under individual or mixed inoculation, achieving a strong BSR. Thus, optimizing target for HIGS via transient N. benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS assays is crucial to drive robust resistance to SMV in soybean and the transgenic S1-TIR-lines will be a potential breeding source for SMV control in field.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2193
Author(s):  
Ankush Purushottam Wankhade ◽  
Sai Rekha Kadirimangalam ◽  
Kannalli Paramashivaiah Viswanatha ◽  
Milind Panjabrao Deshmukh ◽  
Vivek Shivajirao Shinde ◽  
...  

Globally, late leaf spot (LLS), a foliar fungal disease is one of the most important biotic constraint in groundnut production. Multi-Parent Advanced Generation Inter Cross (MAGIC) groundnut population was developed in a convergent crossing scheme using eight founder parents to develop a mapping population for multiple traits includes LLS. The experiments conducted in light chamber using detached leaf assay, and disease field screening nurseries at two locations (ICRISAT and ARS, Kasbe Digraj) showed significant variability for LLS resistance and component of resistance traits. Total 10 MAGIC lines with longer incubation (>11.0 days) and two MAGIC lines with longer latent period (>27 days) than the resistant parent, GPBD 4 were identified. The MAGIC lines, ICGR 171413, and ICGR 171443 with a lesion diameter of <1 mm and 4.10–5.67% of leaf area damage can be valuable sources for the alleles limiting the pathogen severity. A total of 20 MAGIC lines recorded significantly superior for disease score at 105 DAP_I (5.60–6.89) compared to resistant check, GPDB 4 (6.89). Further studies to determine the type and number of genes controlling the LLS component traits in groundnut will be useful for improvement of resistance to LLS. Genomic selection approach can be valuable in groundnut breeding to harness the minor alleles contributing to the component traits of LLS resistance.


Author(s):  
Xiaoyu Wang ◽  
Aimin Wang ◽  
Zhiyi Chen ◽  
Lihui Wei

Rice aggregate sheath spot disease occurs in many countries, causing serious yield losses. In China, the disease-causing fungus Rhizoctonia oryzae-sativae was reported in 1985, and since then, it has rarely been reported in major rice-growing areas after almost 30 years. Compared with Rhizoctonia solani, R. oryzae-sativae has a significantly different physiological morphology and growth status, although both fungi affect rice leaves in very similar ways. The optimum temperature for the suitable growth of R. oryzae-sativae is 31 °C, which is consistent with previous reports. We extracted phytotoxins from R. oryzae-sativae and analyzed its biological activity via the detached leaf and radicle inhibition methods. Rhizoctonia solani and R. oryzae-sativae exhibit differences in terms of pathogenicity and toxins activity, which indicates that these fungi may produce different toxins components. Based on gas chromatography–mass spectrometry data, esters, phenols, and other components were present in the crude toxins extract of R. oryzae-sativae. Our research provides a new method for studying the phytotoxins of R. oryzae-sativae. However, further studies are needed to elucidate the pathogenic mechanisms responsible for the aggregate sheath spot disease on rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hu Zhou ◽  
Zuo-hua Ren ◽  
Xue Zu ◽  
Xi-yue Yu ◽  
Hua-jun Zhu ◽  
...  

Bacillus cereus YN917, obtained from a rice leaf with remarkable antifungal activity against Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible biocontrol properties. YN917 strain exhibits multiple plant growth-promoting and disease prevention traits, including production of indole-3-acetic acid (IAA), ACC deaminase, siderophores, protease, amylase, cellulase, and β-1,3-glucanase, and harboring mineral phosphate decomposition activity. The effects of the strain YN917 on growth promotion and disease prevention were further evaluated under detached leaf and greenhouse conditions. The results revealed that B. cereus YN917 can promote seed germination and seedling plant growth. The growth status of rice plants was measured from the aspects of rice plumule, radicle lengths, plant height, stem width, root lengths, fresh weights, dry weights, and root activity when YN917 was used as inoculants. YN917 significantly reduced rice blast severity under detached leaf and greenhouse conditions. Genome analysis revealed the presence of gene clusters for biosynthesis of plant promotion and antifungal compounds, such as IAA, tryptophan, siderophores, and phenazine. In summary, YN917 can not only be used as biocontrol agents to minimize the use of chemical substances in rice blast control, but also can be developed as bio-fertilizers to promote the rice plant growth.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 628
Author(s):  
Ulrike Beukert ◽  
Nina Pfeiffer ◽  
Erhard Ebmeyer ◽  
Valentin Hinterberger ◽  
Stefanie Lueck ◽  
...  

Leaf rust resistance is of high importance for a sustainable European wheat production. The expression of known resistance genes starts at different developmental stages of wheat. Breeding for resistance can be supported by a fast, precise, and resource-saving phenotyping. The examination of detached leaf assays of juvenile plants inoculated under controlled conditions and phenotyped by a robotic- and computer-based, high-throughput system is a promising approach in this respect. Within this study, the validation of the phenotyping workflow was conducted based on a winter wheat set derived from Central Europe and examined at different plant developmental stages. Moderate Pearson correlations of 0.38–0.45 comparing leaf rust resistance of juvenile and adult plants were calculated and may be mainly due to different environmental conditions. Specially, the infection under controlled conditions was limited by the application of a single rust race at only one time point. Our results suggest that the diversification with respect to the applied rust race spectrum is promising to increase the consistency of detached leaf assays and the transferability of its results to the field.


Author(s):  
Raman Bansal ◽  
M A Rouf Mian ◽  
Andy Michel

Abstract Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.


Sign in / Sign up

Export Citation Format

Share Document