Components of Cowpea Resistance to the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae)

2019 ◽  
Vol 112 (5) ◽  
pp. 2418-2424
Author(s):  
Frank J Messina ◽  
Alexandra M Lish ◽  
Zachariah Gompert

Abstract Cowpea, Vigna unguiculata (L.) Walp., serves as a major source of dietary protein in many tropical and subtropical regions around the world. To identify loci associated with agronomically desirable traits, eight elite cowpea cultivars were systematically inter-crossed for eight generations to yield 305 recombinant inbred lines. Here, we investigated whether these founder parents also possess resistance to the seed beetle Callosobruchus maculatus (F.), a highly destructive post-harvest pest. We estimated larval survival in seeds, egg-to-adult development time, adult mass at emergence, and seed acceptance for oviposition. Survival varied significantly among cowpea cultivars, but the pattern was complicated by an unexpected source of mortality; on three cultivars, mature larvae in a substantial fraction of seeds (20–36%) exited seeds prematurely, and consequently failed to molt into viable adults. Even if such seeds were eliminated from the analysis, survival in the remaining seeds varied from 49 to 92% across the eight parents. Development time and body mass also differed among hosts, with particularly slow larval development on three closely related cultivars. Egg-laying females readily accepted all cultivars except one with a moderately rugose seed coat. Overall, suitability ranks of the eight cultivars depended on beetle trait; a cultivar that received the most eggs (IT82E-18) also conferred low survival. However, one cultivar (IT93K-503-1) was a relatively poor host for all traits. Given the magnitude of variation among parental cultivars, future assays of genotyped recombinant progeny can identify genomic regions and candidate genes associated with resistance to seed beetles.

2021 ◽  
Author(s):  
Frank J Messina ◽  
Alexandra M Lish ◽  
Zachariah Gompert

Abstract Cowpea ( Vigna unguiculata ) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus , is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.


2007 ◽  
Vol 97 (1) ◽  
pp. 49-54 ◽  
Author(s):  
C.W. Fox ◽  
K.L. Scheibly ◽  
B.P. Smith ◽  
W.G. Wallin

AbstractInbreeding depression is well documented in insects but the degree to which inbreeding depression varies among populations within species, and among traits within populations, is poorly studied in insects other than Drosophila. Inbreeding depression was examined in two long-term laboratory colonies of the seed beetle, Callosobruchus maculatus (Fabricius), which are used frequently as models for experiments in ecology, evolution and behaviour. Inbreeding depression in these laboratory colonies are compared with one recently field-collected population of a different seed beetle, Stator limbatus Horn. Inbreeding reduced embryogenesis, egg hatch and larval survival in both species, such that eggs produced by sib matings were >17% less likely to produce an adult offspring. Inbred larvae also took 4–6% longer to develop to emergence in both species. Inbreeding depression varied among the measured traits but did not differ between the two populations of C. maculatus for any trait, despite the large geographic distance between source populations (western Africa vs. southern India). Inbreeding depression was similar in magnitude between C. maculatus and S. limbatus. This study demonstrates that these laboratory populations of C. maculatus harbour substantial genetic loads, similar to the genetic load of populations of S. limbatus recently collected from the field.


2014 ◽  
Vol 18 (3) ◽  
pp. 368-376 ◽  
Author(s):  
P. Mohamed Shameer ◽  
K. Sowmithra ◽  
B. P. Harini ◽  
R. C. Chaubey ◽  
S. K. Jha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document