seed beetle
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 39)

H-INDEX

36
(FIVE YEARS 2)

NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 167-192
Author(s):  
Arturo Cocco ◽  
Giuseppe Brundu ◽  
Cyril Berquier ◽  
Marie Cécile Andreï-Ruiz ◽  
Michelina Pusceddu ◽  
...  

Stator limbatus is a phytophagous beetle native to warm regions of North and Central America, feeding on Fabaceae seeds and one of the most polyphagous species within the subfamily Bruchinae, here reported for the first time in Europe and on new hosts. Adult beetles emerged from Acacia spp. seeds collected in the islands of Corsica (France), and Sardinia (Italy). The wide presence in Sardinia and Corsica supports the hypothesis that this alien species was introduced several years ago. In both islands, S. limbatus emerged from Acacia mearnsii seeds, with infestation rates of up to 74.2 and 90.8% in 2019 and 2020, respectively. This seed beetle also emerged from two previously unreported host species, Acacia saligna and A. pycnantha, showing highest infestation rates of 4.0 and 95.1%, respectively. Both Acacia species are reported as new host associations with S. limbatus. Overall, seed infestation rates recorded in 2019 and 2020 indicate that S. limbatus is well established and that Mediterranean bioclimatic conditions are suitable for its population increase in size. This study lays the foundations for further research on known and potential host species and the spread and distribution of S. limbatus in Europe.


2021 ◽  
Author(s):  
Edward R Ivimey-Cook ◽  
Claudio Piani ◽  
Wei-Tse Hung ◽  
Elena C Berg

The impacts of climate change on biological systems are notoriously difficult to measure, and laboratory studies often do not realistically represent natural fluctuations in environmental conditions. To date, most experimental studies of thermal adaptation test populations at constant temperatures, or they make incremental changes to an otherwise constant mean background state. To address this, we examined the long-term effects of stressful fluctuating daily temperature on several key life history traits in two laboratory populations of the seed beetle, Callosobruchus maculatus. These populations were kept for 19 generations at either a constant control temperature, T=29C, or at a fluctuating daily cycle with Tmean=33C, Tmax=40C, and Tmin=26C. The latter being a simple representation of daily temperatures in southern central India in May, where this species originally evolved. We found that beetles that had evolved in stressful environments were smaller in body size when switched to a constant 29C and had far greater reproductive fitness in comparison to beetles from both the constant control and continuously stressful 33C environments. This suggests that beetles raised in environments with stressful fluctuating temperatures were more phenotypically plastic and had greater genetic variability than control treatment beetles and indicates that populations that experience fluctuations in temperature may be better able to respond to short-term changes in environmental conditions.


Author(s):  
Jānis Gailis ◽  
Nameda Astašova ◽  
Edīte Jākobsone ◽  
Laura Ozoliņa-Pole
Keyword(s):  

2021 ◽  
Author(s):  
Frank J Messina ◽  
Alexandra M Lish ◽  
Zachariah Gompert

Abstract Cowpea ( Vigna unguiculata ) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus , is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.


2020 ◽  
Vol 11 (12) ◽  
pp. 1701-1706
Author(s):  
Leslie A. Holmes ◽  
William A. Nelson ◽  
Markus Dyck ◽  
Stephen C. Lougheed

BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dmitry Kutcherov

Abstract Background The thermal plasticity of life-history traits receives wide attention in the recent biological literature. Of all the temperature-dependent traits studied, developmental rates of ectotherms are especially often addressed, and yet surprisingly little is known about embryonic responses to temperature, including changes in the thermal thresholds and thermal sensitivity during early development. Even postembryonic development of many cryptically living species is understood superficially at best. Results This study is the first to estimate the exact durations of developmental stages in the cowpea seed beetle C. maculatus from oviposition to adult emergence at five permissive constant temperatures from 20 to 32 °C. Early embryonic development was tracked and documented by means of destructive sampling and subsequent confocal imaging of fluorescently stained specimens. Late embryonic and early larval development was studied with the use of destructive sampling and light microscopy. Well-resolved temporal series based on thousands of embryos allowed precise timing of the following developmental events: formation of the blastoderm; formation, elongation, and retraction of the germ band; dorsal closure; the onset and completion of sclerotization of the cuticle; hatching, and penetration of the first-instar larva into the cowpea seed. Pupation and adult eclosion were observed directly through an incision in the seed coat. The thermal phenotype of C. maculatus was found to vary in the course of ontogeny and different stages scaled disproportionately with temperature, but pitfalls and caveats associated with analyses of relative durations of individual stages are also briefly discussed. Conclusion Disproportionate changes in developmental durations with temperature may have important implications when study design requires a high degree of synchronization among experimental embryos or when the occurrence of particular stages in the field is of interest, as well as in any other cases when development times need to be estimated with precision. This work provides one of the first examples of integration of embryological techniques with ecophysiological concepts and will hopefully motivate similar projects in the future. While experiments with Drosophila continue to be the main source of information on animal development, knowledge on other model species is instrumental to building a broader picture of developmental phenomena.


Sign in / Sign up

Export Citation Format

Share Document