genetic load
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 99)

H-INDEX

42
(FIVE YEARS 6)

2021 ◽  
Vol 6 (4) ◽  
pp. 142-150
Author(s):  
A. N. Volkov ◽  
L. V. Nacheva

Cytogenetics is an essential part of human genetics which studies the structure of chromosomes and their collection which is called karyotype. Cytogenetic techniques are employed while interrogating DNA organisation and compaction. Analysis of the chromosomal structure contributes to uncovering the molecular basis of various cellular processes in normal and pathological conditions. Furthermore, spectrum and frequency of chromosome abnormalities serves as an indicator of mutagenic effects. Cytogenetic techniques became indispensable for discovering the genetic causes of human diseases at different stages of ontogenesis. Genetic abnormalities are a common cause of impaired reproductive function, abnormal pregnancy, and neonatal malformations. Genetic screening for chromosomal abnormalities and congenital anomalies is a powerful tool for reducing the genetic load in human populations as well as disease, psychological and social burden on families and societies. This paper begins the cycle of lectures on molecular basis of human cytogenetics, cytogenetic techniques, and the corresponding research and clinical applications. The lecture is primarily aimed at biomedical students and physicians who often have an unmet need to analyse and interpret the results of cytogenetic analyses.


2021 ◽  
Author(s):  
Beatriz Navarro-Dominguez ◽  
Ching-Ho Chang ◽  
Cara Brand ◽  
Christina Muirhead ◽  
Daven Presgraves ◽  
...  

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation to gain preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing alternative alleles. While at least two loci are important for male drive- the driver and the target- linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversion on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over and with wildtype chromosomes only via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


2021 ◽  
Author(s):  
Michal Hledik ◽  
Nick H Barton ◽  
Gasper Tkacik

Selection accumulates information in the genome - it guides stochastically evolving populations towards states (genotype frequencies) that would be unlikely under neutrality. This can be quantified as the Kullback-Leibler (KL) divergence between the actual distribution of genotype frequencies and the corresponding neutral distribution. First, we show that this population-level information sets an upper bound on the information at the level of genotype and phenotype, limiting how precisely they can be specified by selection. Next, we study how the accumulation and maintenance of information is limited by the cost of selection, measured as the genetic load or the relative fitness variance, both of which we connect to the control-theoretic KL cost of control. The information accumulation rate is upper bounded by the population size times the cost of selection. This bound is very general, and applies across models (Wright-Fisher, Moran, diffusion) and to arbitrary forms of selection, mutation and recombination. Finally, the cost of maintaining information depends on how it is encoded: specifying a single allele out of two is expensive, but one bit encoded among many weakly specified loci (as in a polygenic trait) is cheap.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009797
Author(s):  
Luis Fernando Samayoa ◽  
Bode A. Olukolu ◽  
Chin Jian Yang ◽  
Qiuyue Chen ◽  
Markus G. Stetter ◽  
...  

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259685
Author(s):  
Pim van Hooft ◽  
Wayne M. Getz ◽  
Barend J. Greyling ◽  
Bas Zwaan ◽  
Armanda D. S. Bastos

A high genetic load can negatively affect population viability and increase susceptibility to diseases and other environmental stressors. Prior microsatellite studies of two African buffalo (Syncerus caffer) populations in South Africa indicated substantial genome-wide genetic load due to high-frequency occurrence of deleterious alleles. The occurrence of these alleles, which negatively affect male body condition and bovine tuberculosis resistance, throughout most of the buffalo’s range were evaluated in this study. Using available microsatellite data (2–17 microsatellite loci) for 1676 animals from 34 localities (from 25°S to 5°N), we uncovered continent-wide frequency clines of microsatellite alleles associated with the aforementioned male traits. Frequencies decreased over a south-to-north latitude range (average per-locus Pearson r = -0.22). The frequency clines coincided with a multilocus-heterozygosity cline (adjusted R2 = 0.84), showing up to a 16% decrease in southern Africa compared to East Africa. Furthermore, continent-wide linkage disequilibrium (LD) at five linked locus pairs was detected, characterized by a high fraction of positive interlocus associations (0.66, 95% CI: 0.53, 0.77) between male-deleterious-trait-associated alleles. Our findings suggest continent-wide and genome-wide selection of male-deleterious alleles driven by an earlier observed sex-chromosomal meiotic drive system, resulting in frequency clines, reduced heterozygosity due to hitchhiking effects and extensive LD due to male-deleterious alleles co-occurring in haplotypes. The selection pressures involved must be high to prevent destruction of allele-frequency clines and haplotypes by LD decay. Since most buffalo populations are stable, these results indicate that natural mammal populations, depending on their genetic background, can withstand a high genetic load.


2021 ◽  
Author(s):  
Swapnil Tichkule ◽  
Yoochan Myung ◽  
Myo T Naung ◽  
Brendan RE Ansell ◽  
Andrew Guy ◽  
...  

Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3-dimensional (3D) visualisation of genotypic information encoded in Variant Call Format (VCF) on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritising targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies.


Genetics ◽  
2021 ◽  
Author(s):  
Xiaoshen Yin ◽  
Dennis Hedgecock

Abstract Understanding the genetic bases of inbreeding depression, heterosis, and genetic load is integral to understanding how genetic diversity is maintained in natural populations. The Pacific oyster Crassostrea gigas, like many long-lived plants, has high fecundity and high early mortality (type-III survivorship), manifesting a large, overt, genetic load; the oyster harbors an even greater concealed genetic load revealed by inbreeding. Here, we map viability QTL (vQTL) in six interrelated F2 oyster families, using high-density linkage maps of single nucleotide polymorphisms generated by genotyping-by-sequencing (GBS) methods. Altogether, we detect 70 vQTL and provisionally infer 89 causal mutations, 11 to 20 per family. Genetic mortality caused by independent (unlinked) vQTL ranges from 94.2% to 97.8% across families, consistent with previous reports. High-density maps provide better resolution of genetic mechanisms, however. Models of one causal mutation present in both identical-by-descent (IBD) homozygotes and heterozygotes fit genotype frequencies at 37 vQTL; consistent with the mutation-selection balance theory of genetic load, 20 are highly deleterious, completely recessive mutations and 17 are less deleterious, partially dominant mutations. Another 22 vQTL require pairs of recessive or partially dominant causal mutations, half showing selection against recessive mutations linked in repulsion, producing pseudo-overdominance. Only eight vQTL appear to support the overdominance theory of genetic load, with deficiencies of both IBD homozygotes, but at least four of these are likely caused by pseudo-overdominance. Evidence for epistasis is absent. A high mutation rate, random genetic drift, and pseudo-overdominance may explain both the oyster’s extremely high genetic diversity and a high genetic load maintained primarily by mutation-selection balance.


Author(s):  
Peter Bang ◽  
Maria Strömberg ◽  
Shoba S. Meera ◽  
Kajsa Igelström

AbstractThe broad autism phenotype (BAP) is a set of characteristics often observed in typically developing people with a genetic load for autism, such as parents of autistic children. The Broad Autism Phenotypic Questionnaire (BAPQ) is a 36-item questionnaire developed to identify the BAP in first-degree relatives of autistic people. We translated the BAPQ into Swedish and examined its psychometric properties in a Swedish sample consisting of 45 parents of children with ASC and 74 parents of non-autistic children. We found support for the original 3-factor structure (aloof, pragmatic language and rigid), good internal consistency and convergent validity with the Autism Quotient. Thus, the Swedish BAPQ exhibits acceptable psychometric properties and may be useful for assessing the BAP in non-clinical populations.


2021 ◽  
Author(s):  
Eric Olinger ◽  
Celine Schaeffer ◽  
Kendrah Kidd ◽  
Yurong Cheng ◽  
Ines Dufour ◽  
...  

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare, large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD) while common, low-effect variants strongly associate with kidney function and risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in gnomAD with MAF ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ~1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD and is associated with kidney failure in the 100,000 Genomes Project (OR 3.99; 1.84-8.98) and the UK Biobank (OR 4.12; 1.32-12.85). Compared to canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD, intermediate reduction of urinary UMOD levels, in line with an intermediate trafficking defect in vitro. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides novel insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Sign in / Sign up

Export Citation Format

Share Document