grain legumes
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 168)

H-INDEX

57
(FIVE YEARS 6)

2021 ◽  
Vol 23 (1) ◽  
pp. 399
Author(s):  
Jitendra Kumar ◽  
Reyazul Rouf Mir ◽  
Safoora Shafi ◽  
Debjyoti Sen Gupta ◽  
Ivica Djalovic ◽  
...  

Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.


2021 ◽  
Author(s):  
Sika Dofonsou Gbegbelegbe ◽  
Swamikannu Nedumaran ◽  
Aymen Frija ◽  
Arega Alene

This document is part of a series of short papers on “The Future of X”, produced as part of foresight-related research supported by the CGIAR Research Program on Policies, Institutions, and Markets, and edited by Keith Wiebe (IFPRI) and Steven Prager (Alliance of Bioversity and CIAT). This short paper is intended to provide a focused, forward-looking perspective on the future of grain legumes and dryland cereals in the drylands of sub-Saharan Africa and South Asia.


Author(s):  
Birgitta Maria Kunz ◽  
Laura Pförtner ◽  
Stefan Weigel ◽  
Sascha Rohn ◽  
Anselm Lehmacher ◽  
...  

AbstractPhomopsins are mycotoxins mainly infesting lupines, with phomopsin A (PHOA) being the main mycotoxin. PHOA is produced by Diaporthe toxica, formerly assigned as toxigenic Phomopsis leptostromiformis, causing infections in lupine plants and harvested seeds. However, Diaporthe species may also grow on other grain legumes, similar to Aspergillus westerdijkiae as an especially potent ochratoxin A (OTA) producer. Formation of PHOA and OTA was investigated on whole field peas as model system to assess fungal growth and toxin production at adverse storage conditions. Field pea samples were inoculated with the two fungal strains at two water activity (aw) values of 0.94 and 0.98 and three different levels of 30, 50, and 80% relative air humidity.After 14 days at an aw value of 0.98, the fungi produced 4.49 to 34.3 mg/kg PHOA and 1.44 to 3.35 g/kg OTA, respectively. Strains of D. toxica also tested showed higher PHOA concentrations of 28.3 to 32.4 mg/kg.D. toxica strains did not grow or produce PHOA at an aw values of 0.94, while A. westerdijkiae still showed growth and OTA production.Elevated water activity has a major impact both on OTA and, even more pronouncedly, on PHOA formation and thus, proper drying and storage of lupins as well as other grain legumes is crucial for product safety.


Author(s):  
B. Archana ◽  
O. Sampath ◽  
K. B. Suneetha Devi ◽  
P. Ravi

Inadequate moisture supply and poor soil management are some of the major constraints for productivity in grain legumes like chickpea, present study was to focus on effect of land configurations and mulching in overcoming the constraints and their effect on growth and yield of chickpea. During rabi, 2019-20, the experiment was laid out in split plot design at College Farm, Agricultural College, Polasa, Jagtial with three land configurations (M1- Flat bed, M2- Ridge and furrow, M3- Broad bed and furrow) as main plots and four mulching treatments (S1- Control, S2- Sesamum mulch, S3- Gliricidia mulch, S4- Paddy straw mulch) as sub plots and are evaluated for growth and yield. Significant performance of the growth parameters was observed under broad bed and furrow land configuration and in contrast, flat bed land configuration recorded the least performance. Among the mulching treatments gliricidia recorded the better performance over other treatments.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sara E. Emery ◽  
Peter Anderson ◽  
Georg Carlsson ◽  
Hanna Friberg ◽  
Mattias C. Larsson ◽  
...  

Oilseed rape (OSR; Brassica napus) is a globally important crop which is increasingly under pressure from pests, pathogens and weeds. We investigated the potential of achieving multifunctional crop protection benefits by intercropping oilseed rape with legumes. A field experiment was conducted in which winter oilseed rape was intercropped with the annual frost sensitive legumes berseem clover (Trifolium alexandrinum) or spring faba bean (Vicia faba), or with the winter grain legumes winter faba bean or winter peas (Pisum sativum). We tracked damage to winter oilseed rape by autumn and spring pests (slugs and insects), pathogens, weed biomass, as well as oilseed rape and intercrop yield in each treatment. Intercropping treatments resulted in pest damage that was equivalent or lower than in oilseed rape alone. Follow up field and lab assessments for the frost sensitive legume intercrops provided evidence for a reduction in autumn pest damage to OSR. Each legume intercrop had its own benefits and drawbacks in relation to pest, pathogen and weed suppression, suggesting that the plant species selected for intercropping with oilseed rape should be based on the pests, pathogens and weeds of greatest concern locally to achieve relevant multifunctional benefits. Our study provides a framework for further experiments in which the multifunctional effects of intercropping on pests, pathogens and weeds can be quantified.


2021 ◽  
Vol 5 ◽  
Author(s):  
Alex Bollington ◽  
Marcia DeLonge ◽  
Dhara Mungra ◽  
Matthew Hayek ◽  
Mustafa Saifuddin ◽  
...  

Recent calls for a global food transformation have centered on simultaneously improving human and environmental health, recognizing that food and nutrient diversity have declined over time while food systems have exacted a heavy climate and ecological toll. Grain legumes and coarse grain crops provide important human nutrition and environmental benefits, but the production and consumption of many of these crops remains relatively low compared to major commodities, such as maize, wheat, rice, and soy. Outstanding hurdles to scaling up these “minor commodity” crops include (among other things) their relatively lower yields, and lower farmer adoption, based partly on actual or perceived profitability and marketability. We hypothesize that these limitations are attributable in part to unequal funding for these crops' research and development (R&D) both on a national and global scale. In the United States, we show that investment patterns for a snapshot of USDA-funded research grants from 2008 to 2019 consistently favor major commodity crops, which received 3 to 4.5 times more funding and 3 to 5 times as many grants than the minor commodity crop groups. This current USDA funding allocation poses a barrier to food system transformations. Achieving nutritious diets for planetary health requires more public agricultural investment toward minor commodity crops and increased collaboration between public health, nutrition, agriculture, and environmental sectors.


2021 ◽  
Vol 22 (23) ◽  
pp. 12970
Author(s):  
Jagadish Rane ◽  
Ajay Kumar Singh ◽  
Mahesh Kumar ◽  
K. M. Boraiah ◽  
Kamlesh K. Meena ◽  
...  

Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2374
Author(s):  
Marium Khatun ◽  
Sumi Sarkar ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Grain legumes are important sources of proteins, essential micronutrients and vitamins and for human nutrition. Climate change, including drought, is a severe threat to grain legume production throughout the world. In this review, the morpho-physiological, physio-biochemical and molecular levels of drought stress in legumes are described. Moreover, different tolerance mechanisms, such as the morphological, physio-biochemical and molecular mechanisms of legumes, are also reviewed. Moreover, various management approaches for mitigating the drought stress effects in grain legumes are assessed. Reduced leaf area, shoot and root growth, chlorophyll content, stomatal conductance, CO2 influx, nutrient uptake and translocation, and water-use efficiency (WUE) ultimately affect legume yields. The yield loss of grain legumes varies from species to species, even variety to variety within a species, depending upon the severity of drought stress and several other factors, such as phenology, soil textures and agro-climatic conditions. Closure of stomata leads to an increase in leaf temperature by reducing the transpiration rate, and, so, the legume plant faces another stress under drought stress. The biosynthesis of reactive oxygen species (ROS) is the most detrimental effect of drought stress. Legumes can adapt to the drought stress by changing their morphology, physiology and molecular mechanism. Improved root system architecture (RSA), reduced number and size of leaves, stress-induced phytohormone, stomatal closure, antioxidant defense system, solute accumulation (e.g., proline) and altered gene expression play a crucial role in drought tolerance. Several agronomic, breeding both conventional and molecular, biotechnological approaches are used as management practices for developing a drought-tolerant legume without affecting crop yield. Exogenous application of plant-growth regulators (PGRs), osmoprotectants and inoculation by Rhizobacteria and arbuscular mycorrhizal fungi promotes drought tolerance in legumes. Genome-wide association studies (GWASs), genomic selection (GS), marker-assisted selection (MAS), OMICS-based technology and CRISPR/Cas9 make the breeding work easy and save time in the developmental cycle to get resistant legumes. Several drought-resistant grain legumes, such as the chickpea, faba bean, common bean and pigeon pea, were developed by different institutions. Drought-tolerant transgenic legumes, for example, chickpeas, are developed by introgressing desired genes through breeding and biotechnological approaches. Several quantitative trait loci (QTLs), candidate genes occupying drought-tolerant traits, are identified from a variety of grain legumes, but not all are under proper implementation. Hence, more research should be conducted to improve the drought-tolerant traits of grain legumes for avoiding losses during drought.


Sign in / Sign up

Export Citation Format

Share Document