scholarly journals Genetic Variation for Mitochondrial Function in the New Zealand Freshwater Snail Potamopyrgus antipodarum

2017 ◽  
Vol 108 (7) ◽  
pp. 759-768 ◽  
Author(s):  
Joel Sharbrough ◽  
Jennifer L Cruise ◽  
Megan Beetch ◽  
Nicole M Enright ◽  
Maurine Neiman
2016 ◽  
Author(s):  
Joel Sharbrough ◽  
Jennifer L. Cruise ◽  
Megan Beetch ◽  
Nicole M. Enright ◽  
Maurine Neiman

ABSTRACTThe proteins responsible for mitochondrial function are encoded by two different genomes with distinct inheritance regimes, rendering rigorous inference of genotype-phenotype connections intractable for all but a few model systems. Asexual organisms provide a powerful means for addressing these challenges because offspring produced without recombination inherit both nuclear and mitochondrial genomes from a single parent. As such, these offspring inherit mitonuclear genotypes that are identical to the mitonuclear genotypes of their parents and siblings and different from those of other asexual lineages. Here, we compared mitochondrial function across distinct asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail model for understanding the evolutionary consequences of asexuality. Our analyses revealed substantial phenotypic variation across asexual lineages at three levels of biological organization: mitogenomic, organellar, and organismal. These data demonstrate that different asexual lineages have different mitochondrial function phenotypes and that there exists heritable variation (that is, the raw material for evolution) for mitochondrial function in P. antipodarum. The discovery of this variation combined with the methods developed here sets the stage to use P. antipodarum to study central evolutionary questions involving mitochondrial function, including whether mitochondrial mutation accumulation influences the maintenance of sexual reproduction in natural populations.


Behaviour ◽  
2000 ◽  
Vol 137 (9) ◽  
pp. 1141-1151 ◽  
Author(s):  
◽  

AbstractParasites often influence the behavior of their hosts in ways that increase the probability of transmission of the parasite. The digenetic trematode Microphallus sp. has been demonstrated to alter the behavior of the New Zealand freshwater snail Potamopyrgus antipodarum in a way that increases the probability that infected snails will be eaten by the final host (waterfowl). Infected snails are found foraging on top of rocks more often in the early morning when waterfowl are feeding and less often in the afternoon when unsuitable hosts (fish) are feeding. The mechanism(s) that the parasite utilizes to produce this behavioral change is not known. The present study investigated three possible behaviors (phototaxis, geotaxis, and photokinesis) that the parasite could alter that may account for the behavioral change seen in the field. Infected and uninfected snails were assessed in terms of their orientation to light (phototaxis), orientation to gravity (geotaxis), and movement in response to light (photokinesis). There was no evidence of phototactic behaviors in either infected or uninfected snails. However, uninfected snails were found to positively orient towards gravity, while infected snails did not. Also, both infected and uninfected snails were found to be positively photokinetic (they move faster in the light than in the dark), but Microphallus infected snails were found to move more slowly than uninfected snails. The differences found between infected and uninfected snails may be part of the manipulative effort of the parasite, but by themselves the differences are not sufficient to explain the patterns observed in the field.


2014 ◽  
Vol 10 (4) ◽  
pp. 20131091 ◽  
Author(s):  
D. M. Soper ◽  
K. C. King ◽  
D. Vergara ◽  
C. M. Lively

Under the Red Queen hypothesis, outcrossing can produce genetically variable progeny, which may be more resistant, on average, to locally adapted parasites. Mating with multiple partners may enhance this resistance by further increasing the genetic variation among offspring. We exposed Potamopyrgus antipodarum to the eggs of a sterilizing, trematode parasite and tested whether this altered mating behaviour. We found that exposure to parasites increased the number of snail mating pairs and the total number of different mating partners for both males and females. Thus, our results suggest that, in host populations under parasite-mediated selection, exposure to infective propagules increases the rate of mating and the number of mates.


2021 ◽  
Author(s):  
Carina Donne ◽  
Katelyn Larkin ◽  
Claire Adrian-Tucci ◽  
Abby Good ◽  
Carson Kephart ◽  
...  

Abstract Potamopyrgus antipodarum is a New Zealand freshwater snail that is invasive worldwide. While native P. antipodarum populations are characterized by frequent coexistence between obligately sexual and obligately asexual individuals, only the asexual snails are known to invade other ecosystems. Despite low genetic diversity and the absence of sex, invasive asexual P. antipodarum are highly successful. Here, we quantified variation in three key life-history traits across invasive P. antipodarum lineages and compared this variation to already documented variation in these same traits in asexual native lineages to provide a deeper understanding of why some lineages become invasive. In particular, we evaluated 1) if invasive lineages of P. antipodarum could be successful because they represent life-history variation from native ancestors that could facilitate invasion, and 2) if invasive populations with higher genetic variation would display relatively high phenotypic variation. We found that invasive snails displayed a non-representative sample of native diversity, with invasive snails growing more slowly and maturing more rapidly than their native counterparts. These results are consistent with expectations of a scenario where invasive lineages represent a subset of native variation that is beneficial in the setting of invasion. Nevertheless, there was no evidence for a relationship between genetic and phenotypic variation, indicating that increased genetic variation does not necessarily translate into greater phenotypic variation, and consistent with earlier studies suggesting an important role for phenotypic plasticity in the P. antipodarum invasion. Together, these results help illuminate the mechanisms driving the worldwide expansion of invasive populations of these snails.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161050 ◽  
Author(s):  
Cristina Takacs-Vesbach ◽  
Kayla King ◽  
David Van Horn ◽  
Katelyn Larkin ◽  
Maurine Neiman

Genetica ◽  
2021 ◽  
Author(s):  
Qiudong Song ◽  
Richard Magnuson ◽  
Joseph Jalinsky ◽  
Marissa Roseman ◽  
Maurine Neiman

1998 ◽  
Vol 76 (10) ◽  
pp. 1878-1884 ◽  
Author(s):  
Edward P Levri

Foraging behavior can be influenced by such factors as predation risk, individual size, and parasite infection. Snails (Potamopyrgus antipodarum) placed in tanks with large rocks were exposed to four types of water: (1) water with crushed snails, (2) water from a tank in which fish (Gobiomorphus cotidianus) were fed only trout chow, (3) water from a tank where the fish were also fed snails, and (4) plain water. Snails could respond by moving to the top of rocks (where algal food was present) or to the bottom of rocks (where the predation risk was lower). The snails responded to fish chemicals by moving to the bottom of rocks. The response was dependent on snail size and fish diet. Smaller snails moved to the bottom of rocks more than larger snails did. Trematode-infected snails were found on top of the rocks more than other classes of snails, but infected snails still moved to the bottom of rocks in response to the fish predator. Snails eaten by fish in the field tend to be smaller than snails in the overall available population. Thus, snails that are more vulnerable to predation respond more intensely to the odor of fish by moving to the bottom of rocks. This size-dependent response to fish appears to be independent of the occurrence of trematode infection.


2012 ◽  
Vol 2 (12) ◽  
pp. 3179-3185 ◽  
Author(s):  
Deanna M. Soper ◽  
Lynda F. Delph ◽  
Curt M. Lively

Sign in / Sign up

Export Citation Format

Share Document