low genetic diversity
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 221)

H-INDEX

33
(FIVE YEARS 6)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Edyta Świętoń ◽  
Kamila Dziadek ◽  
Krzysztof Śmietanka

Bornaviruses are a diverse family of viruses infecting various hosts, including birds. Aquatic bird bornavirus 1 (ABBV-1) and aquatic bird bornavirus 2 (ABBV-2) have been found in wild waterfowl but data on their prevalence are scarce. To gain knowledge on the occurrence of ABBVs in Poland, samples originating from dead birds of the Anseriformes order collected in 2016–2021 were tested with a real time RT-PCR method targeting the ABBVs genome. A total of 514 birds were examined, including 401 swans, 96 ducks and 17 geese. The presence of ABBV-1 RNA was detected in 52 swans (10.1% of all tested birds) from 40 different locations. No positive results were obtained for ducks and geese. Sequences of about 2300 bases were generated for 18 viruses and phylogenetic analysis was performed. A relatively low genetic diversity of the examined ABBV-1 strains was observed as all were gathered in a single cluster in the phylogenetic tree and the minimum nucleotide identity was 99.14%. The Polish strains were closely related to ABBV-1 identified previously in Denmark and Germany, but a limited number of sequences from Europe hinders the drawing of conclusions about interconnections between Polish and other European ABBVs. The results of the present study provide new insights into the distribution and genetic characteristics of ABBVs in wild birds in Europe.


2022 ◽  
Author(s):  
Nathan J Butterworth ◽  
James F Wallman ◽  
Nikolas P Johnston ◽  
Blake M Dawson ◽  
Angela McGaughran

Climate change and deforestation are causing rainforests to become increasingly fragmented, placing them at heightened risk of biodiversity loss. Invertebrates constitute the greatest proportion of this biodiversity, yet we lack basic knowledge of their population structure and ecology. It is not currently feasible to assess the population structure of every invertebrate species, so there is a compelling need to identify indicator species that are broadly indicative of habitat-level patterns and processes. Blowflies are an ideal candidate, because they are widespread, abundant, and can be easily collected within rainforests. Here, we present the first study of the blowfly Chrysomya latifrons , which is endemic to the rainforests of New South Wales, Australia. We genotyped 188 flies from 15 isolated rainforests and found low overall genetic diversity and a complete lack of genetic structure between populations, suggesting the presence of a single large panmictic population along 1,000 km of the Australian east coast. This highlights that: (1) Ch. latifrons inhabits every rainforest in NSW and undoubtedly plays an important role in these ecosystems, but low genetic diversity may cause it to struggle to adapt to a changing climate; (2) strongly dispersing insects have the capacity to migrate between isolated rainforests, likely carrying pollen, parasites, phoronts, and pathogens with them to form crucial trophic networks; and (3) there is an urgent need for similar studies on poorly dispersing rainforest insects, as these may be the most fragmented and at highest risk of local extinction.


2022 ◽  
Author(s):  
Jin-Yong Kim ◽  
Soo Hyung Eo ◽  
Seung-Gu Kang ◽  
Jung Eun Hwang ◽  
Yonggu Yeo ◽  
...  

Abstract Background Hill pigeons (Columba rupestris) are close to local extinction (ca. less than 100 individuals) in South Korea where a variety of conservation management procedures are urgently required. Objective This study was aimed at determining the conservation direction of captive propagation and reintroduction of hill pigeons using genetic information based on mitochondrial DNA. We also evaluated the extent of hybridization between hill pigeons and cohabiting domestic pigeons. Methods We used 51 blood samples of hill pigeons from Goheung (GH), Gurye (GR), and Uiryeong (UR), and domestic pigeons cohabiting with hill pigeon populations. Genetic diversity, pairwise Fst, analysis of molecular variance, and haplotype network analysis were used to examine the genetic structure of hill pigeons. Results Hill pigeons that inhabited South Korea were not genetically distinct from Mongolian and Russian populations and showed relatively low genetic diversity compared with other endangered species in Columbidae. The GR population that exhibited the largest population size showed lower genetic diversity, compared to the other populations, although the pairwise Fst values of the three populations indicated low genetic differentiation. The GH and GR populations were confirmed to lack hybridization, relatively, whereas the UR population was found to exhibit some degrees of hybridization. Conclusion To conserve hill pigeons with low genetic diversity and differentiation in South Korea, the conservation process of captive propagation and reintroduction may require artificial gene flows among genetically verified populations in captivity and wildness. The introduction of foreign individuals from surrounding countries is also considered an alternative strategy for maintaining genetic diversity.


2021 ◽  
Vol 14 (4) ◽  
pp. 1962-1967
Author(s):  
Ayman Sabry

The current study is the first comprehensive investigation to address the native chicken ecotypes of the Taif region to unravel the genetic diversity using a dense panel of 40 microsatellites (SSR). Blood samples were collected from 25 hens randomly sampled from a village farm at Taif governorate. A total of 147 alleles were detected, with an average of 3.7 alleles per locus. The overall mean of polymorphic information content (PIC) was 0.43. The average observed heterozygosity (Hobs) of 0.28 was lower than the expected heterozygosity (Hexp) of 0.48. Out of 40l ocionly11 loci showed insignificant deviation from Hardy Weinberg expectation. The ecotypes showed low genetic diversity (HS = 0.65) and a high level of inbreeding (FIS= 0.75). The high FIS is indicative of the endangerment potentiality of this ecotype. Nine SSR showed an inbreeding coefficient of one. The significant estimate of the inbreeding coefficient of the present study calls for an immediate breeding plan to preserve such endangered ecotypes. Results of the present study will provide an initial guide to design further investigations for the development of sustainable genetic improvement and conservation programs for the Taif ecotype genetic resources.


2021 ◽  
Vol 46 (4) ◽  
pp. 951-961
Author(s):  
Jasper John A. Obico ◽  
Hemres Alburo ◽  
Julie F. Barcelona ◽  
Marie Hale ◽  
Lisa Paguntalan ◽  
...  

Abstract— Little is known about the effects of habitat fragmentation on the patterns of genetic diversity and genetic connectivity of species in the remaining tropical forests of Southeast Asia. This is particularly evident in Cebu, a Philippine island that has a long history of deforestation and has lost nearly all of its forest cover. To begin filling this gap, data from 13 microsatellite loci developed for Tetrastigma loheri (Vitaceae), a common vine species in Philippine forests, were used to study patterns of genetic diversity and genetic connectivity for the four largest of the remaining forest areas in Cebu. Evidence of relatively high levels of inbreeding was found in all four areas, despite no evidence of low genetic diversity. The four areas are genetically differentiated, suggesting low genetic connectivity. The presence of inbreeding and low genetic connectivity in a commonly encountered species such as T. loheri in Cebu suggests that the impact of habitat fragmentation is likely greater on rare plant species with more restricted distributions in Cebu. Conservation recommendations for the remaining forest areas in Cebu include the establishment of steppingstone corridors between nearby areas to improve the movement of pollinators and seed dispersers among them.


Author(s):  
S. Utevsky ◽  
Y Mabrouki ◽  
A. F. Taybi ◽  
M. Huseynov ◽  
A. Manafov ◽  
...  

Leeches of the genus Limnatis Moquin–Tandon, 1827 infest mucous membranes of various mammals, including humans and domestic ungulates. The type species of the genus L. nilotica (Savigny, 1822) was initially thought to occur throughout the Western Palaearctic, from North Africa to the Middle East and Central Asia. It was later found that L. paluda (Tennent, 1859) is a widespread Western Asian species. However, the South Caucasus and vast areas of Central Asia have not been explored sufficiently in terms of leeches of the genus Limnatis. We recorded L. paluda from Azerbaijan and Uzbekistan for the first time. We also carried out the first molecular characterisation of L. nilotica herein. We found a deep genetic differentiation (8 %) between the Western Asian L. paluda and North African (Moroccan) L. nilotica based on their COI sequences. This finding corroborates a previous morphology–based hypothesis on their separate species assignments. The low genetic diversity of L. paluda is explained by the recent colonisation of arid landscapes of Western Asia.


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Jordan B. Bemmels ◽  
Else K. Mikkelsen ◽  
Oliver Haddrath ◽  
Rogan M. Colbourne ◽  
Hugh A. Robertson ◽  
...  

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi ( Apteryx ), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation ( F ST ), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.


2021 ◽  
Vol 9 (12) ◽  
pp. 2565
Author(s):  
Ana Aragonés ◽  
Tania Manzanos ◽  
Glen Stanosz ◽  
Isabel A. Munck ◽  
Rosa Raposo ◽  
...  

Diplodia tip blight is the most ubiquitous and abundant disease in Spanish Pinus radiata plantations. The economic losses in forest stands can be very severe because of its abundance in cones and seeds together with the low genetic diversity of the host. Pinus resinosa is not genetically diverse in North America either, and Diplodia shoot blight is a common disease. Disease control may require management designs to be adapted for each region. The genetic diversity of the pathogen could be an indicator of its virulence and spreading capacity. Our objective was to understand the diversity of Diplodia spp. in Spanish plantations and to compare it with the structure of American populations to collaborate in future management guidelines. Genotypic diversity was investigated using microsatellite markers. Eight loci (SS9–SS16) were polymorphic for the 322 isolates genotyped. The results indicate that Diplodia sapinea is the most frequent Diplodia species present in plantations of the north of Spain and has high genetic diversity. The higher genetic diversity recorded in Spain in comparison to previous studies could be influenced by the intensity of the sampling and the evidence about the remarkable influence of the sample type.


Author(s):  
Kanwal Zia ◽  
Syed Bilal Hussain

DNA markers application in marker-assisted breeding of cotton is handicapped due to low genetic diversity in cotton germplasm. The present study was designed to identify DNA markers, predominately simple sequence repeats (SSRs), associated with tolerance/resistance to heat stress as a consequence of boll shedding. To find out the genetic diversity a total of 24 cotton genotypes and 50 SSR primers were used. Total 288 alleles were produced with an average of 5.7 alleles per primer. Bootstrap cluster analysis used to generate a dendrogram that cluster the 24 accessions into two main clusters. Eleven out of 24 genotypes fall in a single cluster. Phenotypically H-4074 gives more diversity, while genotypically H-4074 sheared the same genetic background as H-4070, H-4091 and H-4090. Low genetic diversity was observed among both genotypic and phenotypic as maximum varieties fall in single group. This study helps for selecting diverse accessions with multiple phenotypic traits, which were drought to boll shedding. It suggests further elaborating the molecular genetic diversity by using new SSR marker to improve the yield of cotton cultivars. These preliminary results set the stage for initiating in depth marker-trait association studies, which will be instrumental for initiating marker-assisted breeding in cotton.


Sign in / Sign up

Export Citation Format

Share Document