scholarly journals Molecular Cloning and Functional Expression of a Chicken Intestinal Peptide Transporter (cPepT1) in Xenopus Oocytes and Chinese Hamster Ovary Cells

2002 ◽  
Vol 132 (3) ◽  
pp. 387-393 ◽  
Author(s):  
Hong Chen ◽  
YuanXiang Pan ◽  
Eric A. Wong ◽  
Jeffrey R. Bloomquist ◽  
Kenneth E. Webb
2001 ◽  
Vol 276 (50) ◽  
pp. 47052-47060 ◽  
Author(s):  
Thomas Secher ◽  
Camilla Lenz ◽  
Giuseppe Cazzamali ◽  
Gunnar Sørensen ◽  
Michael Williamson ◽  
...  

The cockroach-type or A-type allatostatins are inhibitory insect neuropeptides with the C-terminal sequence Tyr/Phe-X-Phe-Gly-Leu-NH2. Here, we have cloned an A-type allatostatin receptor from the silkwormBombyx mori(BAR). BAR is 361 amino acid residues long, has seven transmembrane domains, shows 60% amino acid residue identity with the firstDrosophilaallatostatin receptor (DAR-1), and 48% identity with the secondDrosophilaallatostatin receptor (DAR-2). The BAR gene has two introns and three exons. These two introns coincide with and have the same intron phasing as two introns in the DAR-1 and DAR-2 genes, showing that the three receptors are not only structurally but also evolutionarily related. Furthermore, we have cloned aBombyxallatostatin preprohormone that contains eight different A-type allatostatins. Chinese hamster ovary cells permanently transfected with BAR DNA react on the addition of 4 × 10−9mBombyxA-type allatostatins with a second messenger cascade (measured as bioluminescence), showing that BAR is a functional A-type allatostatin receptor. Southern blots suggest thatBombyxhas at least one other BAR-related gene in addition to the BAR gene described in this paper. Northern blots and quantitative reverse transcriptase-polymerase chain reaction of different larval tissues show that BAR mRNA is mainly expressed in the gut and to a much lesser extent in the brain. To our knowledge, this is the first report on the molecular cloning and functional expression of an insect gut/brain peptide hormone receptor.


1987 ◽  
Vol 105 (1) ◽  
pp. 207-214 ◽  
Author(s):  
T E McGraw ◽  
L Greenfield ◽  
F R Maxfield

Transferrin (Tf) receptor-variant Chinese hamster ovary cells have been isolated by selection for resistance to two Tf-toxin conjugates. The hybrid toxins contain Tf covalently linked to ricin A chain or a genetically engineered diphtheria toxin fragment. The Tf-receptor-variant (TRV) cells do not have detectable cell-surface Tf receptor; they do not bind fluorescein-Tf or 125I-Tf. TRV cells are at least 100-fold more resistant to the Tf-diphtheria toxin conjugate than are the parent cells. The TRV cells have retained sensitivity to native diphtheria toxin, indicating that the increased resistance to the conjugate is correlated with the loss of Tf binding. The endocytosis of fluorescein-labeled alpha 2-macroglobulin is normal in TRV cells, demonstrating that the defect does not pleiotropically affect endocytosis. Since these cells lack endogenous Tf receptor activity, they are ideally suited for studies of the functional expression of normal or altered Tf receptors introduced into the cells by cDNA transfection. One advantage of this system is that Tf binding and uptake can be used to monitor the behavior of the transfected receptor. A cDNA clone of the human Tf receptor has been transfected into TRV cells. In the stably expressing transfectants, the behavior of the human receptor is very similar to that of the endogenous Chinese hamster ovary cell Tf receptor. Tf binds to cell surface receptors, and is internalized into the para-Golgi region of the cell. Iron is released from Tf, and the apo-Tf and its receptor are recycled back to the cell surface. Thus, the TRV cells can be used to study the behavior of genetically altered Tf receptors in the absence of interfering effects from endogenous receptors.


1999 ◽  
Vol 260 (3) ◽  
pp. 869-878 ◽  
Author(s):  
Yuji Hiraki ◽  
Kaori Mitsui ◽  
Naoto Endo ◽  
Kazuhiro Takahashi ◽  
Tadashi Hayami ◽  
...  

Pathology ◽  
1993 ◽  
Vol 25 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wanda B. Mackinnon ◽  
Marlen Dyne ◽  
Rebecca Hancock ◽  
Carolyn E. Mountford ◽  
Adrienne J. Grant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document