scholarly journals Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress

2019 ◽  
Vol 70 (21) ◽  
pp. 6101-6112 ◽  
Author(s):  
Daisuke Tsugama ◽  
Hyuk Sung Yoon ◽  
Kaien Fujino ◽  
Shenkui Liu ◽  
Tetsuo Takano

Hypo-osmotic stress induces nuclear accumulation of the transcription factor VIP1. We show that protein phosphatase 2A (PP2A) regulates this process, and that VIP1 interacts with PP2A B''-family subunits.

2019 ◽  
Vol 15 (2) ◽  
pp. 1706026 ◽  
Author(s):  
Hyuk Sung Yoon ◽  
Kaien Fujino ◽  
Shenkui Liu ◽  
Tetsuo Takano ◽  
Daisuke Tsugama

2020 ◽  
Vol 295 (25) ◽  
pp. 8550-8559 ◽  
Author(s):  
Bekir Cinar ◽  
Marwah M. Al-Mathkour ◽  
Shafiq A. Khan ◽  
Carlos S. Moreno

The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell–cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho–Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho–Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho–Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9–aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor–STK4/MST1–protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document