scholarly journals Herbrand Proofs and Expansion Proofs as Decomposed Proofs

2020 ◽  
Vol 30 (8) ◽  
pp. 1711-1742
Author(s):  
Benjamin Ralph

Abstract The reduction of undecidable first-order logic to decidable propositional logic via Herbrand’s theorem has long been of interest to theoretical computer science, with the notion of a Herbrand proof motivating the definition of expansion proofs. In this paper we construct simple deep inference systems for first-order logic, both with and without cut, such that ‘decomposed’ proofs—proofs where the contractive and non-contractive behaviour of the proof is separated—in each system correspond to either expansion proofs or Herbrand proofs. Translations between proofs in this system, expansion proofs and Herbrand proofs are given, retaining much of the structure in each direction.

2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


Author(s):  
Rohit Parikh

Church’s theorem, published in 1936, states that the set of valid formulas of first-order logic is not effectively decidable: there is no method or algorithm for deciding which formulas of first-order logic are valid. Church’s paper exhibited an undecidable combinatorial problem P and showed that P was representable in first-order logic. If first-order logic were decidable, P would also be decidable. Since P is undecidable, first-order logic must also be undecidable. Church’s theorem is a negative solution to the decision problem (Entscheidungsproblem), the problem of finding a method for deciding whether a given formula of first-order logic is valid, or satisfiable, or neither. The great contribution of Church (and, independently, Turing) was not merely to prove that there is no method but also to propose a mathematical definition of the notion of ‘effectively solvable problem’, that is, a problem solvable by means of a method or algorithm.


Author(s):  
Jan Gorzny ◽  
Ezequiel Postan ◽  
Bruno Woltzenlogel Paleo

Abstract Proofs are a key feature of modern propositional and first-order theorem provers. Proofs generated by such tools serve as explanations for unsatisfiability of statements. However, these explanations are complicated by proofs which are not necessarily as concise as possible. There are a wide variety of compression techniques for propositional resolution proofs but fewer compression techniques for first-order resolution proofs generated by automated theorem provers. This paper describes an approach to compressing first-order logic proofs based on lifting proof compression ideas used in propositional logic to first-order logic. The first approach lifted from propositional logic delays resolution with unit clauses, which are clauses that have a single literal. The second approach is partial regularization, which removes an inference $\eta $ when it is redundant in the sense that its pivot literal already occurs as the pivot of another inference in every path from $\eta $ to the root of the proof. This paper describes the generalization of the algorithms LowerUnits and RecyclePivotsWithIntersection (Fontaine et al.. Compression of propositional resolution proofs via partial regularization. In Automated Deduction—CADE-23—23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31–August 5, 2011, p. 237--251. Springer, 2011) from propositional logic to first-order logic. The generalized algorithms compresses resolution proofs containing resolution and factoring inferences with unification. An empirical evaluation of these approaches is included.


2018 ◽  
Vol 16 (3) ◽  
pp. 5-15
Author(s):  
V. V. Tselishchev

The application of game-theoretic semantics for first-order logic is based on a certain kind of semantic assumptions, directly related to the asymmetry of the definition of truth and lies as the winning strategies of the Verifier (Abelard) and the Counterfeiter (Eloise). This asymmetry becomes apparent when applying GTS to IFL. The legitimacy of applying GTS when it is transferred to IFL is based on the adequacy of GTS for FOL. But this circumstance is not a reason to believe that one can hope for the same adequacy in the case of IFL. Then the question arises if GTS is a natural semantics for IFL. Apparently, the intuitive understanding of negation in natural language can be explicated in formal languages in various ways, and the result of an incomplete grasp of the concept in these languages can be considered a certain kind of anomalies, in view of the apparent simplicity of the explicated concept. Comparison of the theoretical-model and game theoretic semantics in application to two kinds of language – the first-order language and friendly-independent logic – allows to discover the causes of the anomaly and outline ways to overcome it.


Author(s):  
Shawn Hedman

The ability to reason and think in a logical manner forms the basis of learning for most mathematics, computer science, philosophy and logic students. Based on the author's teaching notes at the University of Maryland and aimed at a broad audience, this text covers the fundamental topics in classical logic in an extremely clear, thorough and accurate style that is accessible to all the above. Covering propositional logic, first-order logic, and second-order logic, as well as proof theory, computability theory, and model theory, the text also contains numerous carefully graded exercises and is ideal for a first or refresher course.


Sign in / Sign up

Export Citation Format

Share Document