scholarly journals Formula size games for modal logic and μ-calculus

2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.

2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.


Author(s):  
Rohit Parikh

Church’s theorem, published in 1936, states that the set of valid formulas of first-order logic is not effectively decidable: there is no method or algorithm for deciding which formulas of first-order logic are valid. Church’s paper exhibited an undecidable combinatorial problem P and showed that P was representable in first-order logic. If first-order logic were decidable, P would also be decidable. Since P is undecidable, first-order logic must also be undecidable. Church’s theorem is a negative solution to the decision problem (Entscheidungsproblem), the problem of finding a method for deciding whether a given formula of first-order logic is valid, or satisfiable, or neither. The great contribution of Church (and, independently, Turing) was not merely to prove that there is no method but also to propose a mathematical definition of the notion of ‘effectively solvable problem’, that is, a problem solvable by means of a method or algorithm.


2018 ◽  
Vol 16 (3) ◽  
pp. 5-15
Author(s):  
V. V. Tselishchev

The application of game-theoretic semantics for first-order logic is based on a certain kind of semantic assumptions, directly related to the asymmetry of the definition of truth and lies as the winning strategies of the Verifier (Abelard) and the Counterfeiter (Eloise). This asymmetry becomes apparent when applying GTS to IFL. The legitimacy of applying GTS when it is transferred to IFL is based on the adequacy of GTS for FOL. But this circumstance is not a reason to believe that one can hope for the same adequacy in the case of IFL. Then the question arises if GTS is a natural semantics for IFL. Apparently, the intuitive understanding of negation in natural language can be explicated in formal languages in various ways, and the result of an incomplete grasp of the concept in these languages can be considered a certain kind of anomalies, in view of the apparent simplicity of the explicated concept. Comparison of the theoretical-model and game theoretic semantics in application to two kinds of language – the first-order language and friendly-independent logic – allows to discover the causes of the anomaly and outline ways to overcome it.


2010 ◽  
Vol 3 (2) ◽  
pp. 175-227 ◽  
Author(s):  
PETER MILNE

Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid (i) to which properties of theories result in the presence of which rules of inference, and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions determined by the formulas occurring as premises and conclusion of the invalid inference for which a counterexample is to be constructed. We obtain an elegant formulation of classical propositional logic with the subformula property and a singularly inelegant formulation of classical first-order logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula results for classical first-order logic obtained as consequences of normalization theorems by Dag Prawitz and Gunnar Stålmarck.


2021 ◽  
Vol 56 ◽  
pp. 57-74
Author(s):  
Tin Perkov ◽  
Luka Mikec

We define a procedure for translating a given first-order formula to an equivalent modal formula, if one exists, by using tableau-based bisimulation invariance test. A previously developed tableau procedure tests bisimulation invariance of a given first-order formula, and therefore tests whether that formula is equivalent to the standard translation of some modal formula. Using a closed tableau as the starting point, we show how an equivalent modal formula can be effectively obtained.


Author(s):  
Paul Wild ◽  
Lutz Schröder

AbstractThe classical van Benthem theorem characterizes modal logic as the bisimulation-invariant fragment of first-order logic; put differently, modal logic is as expressive as full first-order logic on bisimulation-invariant properties. This result has recently been extended to two flavours of quantitative modal logic, viz. fuzzy modal logic and probabilistic modal logic. In both cases, the quantitative van Benthem theorem states that every formula in the respective quantitative variant of first-order logic that is bisimulation-invariant, in the sense of being nonexpansive w.r.t. behavioural distance, can be approximated by quantitative modal formulae of bounded rank. In the present paper, we unify and generalize these results in three directions: We lift them to full coalgebraic generality, thus covering a wide range of system types including, besides fuzzy and probabilistic transition systems as in the existing examples, e.g. also metric transition systems; and we generalize from real-valued to quantale-valued behavioural distances, e.g. nondeterministic behavioural distances on metric transition systems; and we remove the symmetry assumption on behavioural distances, thus covering also quantitative notions of simulation.


10.37236/1616 ◽  
2000 ◽  
Vol 8 (2) ◽  
Author(s):  
Joel H. Spencer ◽  
Katherine St. John

The Ehrenfeucht-Fraisse game is a two-person game of perfect information which is connected to the Zero-One Laws of first order logic. We give bounds for roughly how quickly the Zero-One Laws converge for random bit strings and random circular bit sequences. We measure the tenaciousness of the second player ("Duplicator") in playing the Ehrenfeucht-Fraisse game, by bounding the numbers of moves Duplicator can play and win with probability $1-\epsilon$. We show that for random bit strings and random circular sequences of length $n$ generated with a low probability ($p\ll n^{-1}$), the number of moves, $T_{\epsilon}(n)$, is $\Theta(\log_2 n)$. For random bit strings and circular sequences with isolated ones ($n^{-1}\ll p \ll n^{-1/2}$), $T_{\epsilon}(n) = O(\min(\log_2 np, -\log_2 np^2))$. For $n^{-1/2}\ll p$ and $(1-p) \ll n^{-1/2}$, we show that $T_{\epsilon}(n) = O(\log^* n)$ for random circular sequences, where $\log^* n$ has the usual definition– the least number of times you iteratively apply the logarithm to get a value less than one.


Author(s):  
Zeno Swijtink

Beth’s theorem is a central result about definability of non-logical symbols in classical first-order theories. It states that a symbol P is implicitly defined by a theory T if and only if an explicit definition of P in terms of some other expressions of the theory T can be deduced from the theory T. Intuitively, the symbol P is implicitly defined by T if, given the extension of these other symbols, T fixes the extension of the symbol P uniquely. In a precise statement of Beth’s theorem this will be replaced by a condition on the models of T. An explicit definition of a predicate symbol states necessary and sufficient conditions: for example, if P is a one-place predicate symbol, an explicit definition is a sentence of the form (x) (Px ≡φ(x)), where φ(x) is a formula with free variable x in which P does not occur. Thus, Beth’s theorem says something about the expressive power of first-order logic: there is a balance between the syntax (the deducibility of an explicit definition) and the semantics (across models of T the extension of P is uniquely determined by the extension of other symbols). Beth’s definability theorem follows immediately from Craig’s interpolation theorem. For first-order logic with identity, Craig’s theorem says that if φ is deducible from ψ, there is an interpolant θ, a sentence whose non-logical symbols are common to φ and ψ, such that θ is deducible from ψ, while φ is deducible from θ. Craig’s theorem and Beth’s theorem also hold for a number of non-classical logics, such as intuitionistic first-order logic and classical second-order logic, but fail for other logics, such as logics with expressions of infinite length.


Sign in / Sign up

Export Citation Format

Share Document