Director Strings Revisited: A Generic Approach to the Efficient Representation of Free Variables in Higher-order Rewriting

2005 ◽  
Vol 15 (2) ◽  
pp. 201-218 ◽  
Author(s):  
F.-R. Sinot
2000 ◽  
Vol 10 (3) ◽  
pp. 361-372 ◽  
Author(s):  
VINCENT PADOVANI

Higher Order Matching consists of solving finite sets of equations of the form u =βηv, where u, v are simply typed terms of λ-calculus, and v is a closed term. Whether this problem is decidable is an open question. In this paper its decidability is proved when the free variables of all equations are of order at most 4 – we actually extend this result to a more general situation in which in addition to equations, disequations are also considered.


2012 ◽  
Vol 22 (3) ◽  
pp. 225-274 ◽  
Author(s):  
MICHAEL GREENBERG ◽  
BENJAMIN C. PIERCE ◽  
STEPHANIE WEIRICH

AbstractSince Findler and Felleisen (Findler, R. B. & Felleisen, M. 2002) introduced higher-order contracts, many variants have been proposed. Broadly, these fall into two groups: some follow Findler and Felleisen (2002) in using latent contracts, purely dynamic checks that are transparent to the type system; others use manifest contracts, where refinement types record the most recent check that has been applied to each value. These two approaches are commonly assumed to be equivalent—different ways of implementing the same idea, one retaining a simple type system, and the other providing more static information. Our goal is to formalize and clarify this folklore understanding. Our work extends that of Gronski and Flanagan (Gronski, J. & Flanagan, C. 2007), who defined a latent calculus λC and a manifest calculus λH, gave a translation φ from λC to λH, and proved that if a λC term reduces to a constant, so does its φ-image. We enrich their account with a translation ψ from λH to λC and prove an analogous theorem. We then generalize the whole framework to dependent contracts, whose predicates can mention free variables. This extension is both pragmatically crucial, supporting a much more interesting range of contracts, and theoretically challenging. We define dependent versions of λH and two dialects (“lax” and “picky”) of λC, establish type soundness—a substantial result in itself, for λH — and extend φ and ψ accordingly. Surprisingly, the intuition that the latent and manifest systems are equivalent now breaks down: the extended translations preserve behavior in one direction, but in the other, sometimes yield terms that blame more.


2001 ◽  
Vol 8 (27) ◽  
Author(s):  
Mario Jose Cáccamo ◽  
Glynn Winskel

A calculus for a fragment of category theory is presented. The types in the language denote categories and the expressions functors. The judgements of the calculus systematise categorical arguments such as: an expression is functorial in its free variables; two expressions are naturally isomorphic in their free variables. There are special binders for limits and more general ends. The rules for limits and ends support an algebraic manipulation of universal constructions as opposed to a more traditional diagrammatic approach. Duality within the calculus and applications in proving continuity are discussed with examples. The calculus gives a basis for mechanising a theory of categories in a generic theorem prover like Isabelle.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Sign in / Sign up

Export Citation Format

Share Document