Computed tomography angiography and other applications of computed tomography

Author(s):  
Michiel A de Graaf ◽  
Arthur JHA Scholte ◽  
Lucia Kroft ◽  
Jeroen J Bax

Patients presenting with acute chest pain constitute a common and important diagnostic challenge. This has increased interest in using computed tomography for non-invasive visualization of coronary artery disease in patients presenting with acute chest pain to the emergency department; particularly the subset of patients who are suspected of having an acute coronary syndrome, but without typical electrocardiographic changes and with normal troponin levels at presentation. As a result of rapid developments in coronary computed tomography angiography technology, high diagnostic accuracies for excluding coronary artery disease can be obtained. It has been shown that these patients can be discharged safely. The accuracy for detecting a significant coronary artery stenosis is also high, but the presence of coronary artery atherosclerosis or stenosis does not imply necessarily that the cause of the chest pain is related to coronary artery disease. Moreover, the non-invasive detection of coronary artery disease by computed tomography has been shown to be related with an increased use of subsequent invasive coronary angiography and revascularization, and further studies are needed to define which patients benefit from invasive evaluation following coronary computed tomography angiography. Conversely, the implementation of coronary computed tomography angiography can significantly reduce the length of hospital stay, with a significant cost reduction. Additionally, computed tomography is an excellent modality in patients whose symptoms suggest other causes of acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary embolism. Furthermore, the acquisition of the coronary arteries, thoracic aorta, and pulmonary arteries in a single computed tomography examination is feasible, allowing ‘triple rule-out’ (exclusion of aortic dissection, pulmonary embolism, and coronary artery disease). Finally, other applications, such as the evaluation of coronary artery plaque composition, myocardial function and perfusion, or fractional flow reserve, are currently being developed and may also become valuable in the setting of acute chest pain in the future.

Author(s):  
Michiel A de Graaf ◽  
Arthur JHA Scholte ◽  
Lucia Kroft ◽  
Jeroen J Bax

Patients presenting with acute chest pain constitute a common and important diagnostic challenge. This has increased interest in using computed tomography for non-invasive visualization of coronary artery disease in patients presenting with acute chest pain to the emergency department; particularly the subset of patients who are suspected of having an acute coronary syndrome, but without typical electrocardiographic changes and with normal troponin levels at presentation. As a result of rapid developments in coronary computed tomography angiography technology, high diagnostic accuracies for excluding coronary artery disease can be obtained. It has been shown that these patients can be discharged safely. The accuracy for detecting a significant coronary artery stenosis is also high, but the presence of coronary artery atherosclerosis or stenosis does not imply necessarily that the cause of the chest pain is related to coronary artery disease. Moreover, the non-invasive detection of coronary artery disease by computed tomography has been shown to be related with an increased use of subsequent invasive coronary angiography and revascularization, and further studies are needed to define which patients benefit from invasive evaluation following coronary computed tomography angiography. Conversely, the implementation of coronary computed tomography angiography can significantly reduce the length of hospital stay, with a significant cost reduction. Additionally, computed tomography is an excellent modality in patients whose symptoms suggest other causes of acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary embolism. Furthermore, the acquisition of the coronary arteries, thoracic aorta, and pulmonary arteries in a single computed tomography examination is feasible, allowing ‘triple rule-out’ (exclusion of aortic dissection, pulmonary embolism, and coronary artery disease). Finally, other applications, such as the evaluation of coronary artery plaque composition, myocardial function and perfusion, or fractional flow reserve, are currently being developed and may also become valuable in the setting of acute chest pain in the future.


Author(s):  
Michiel A de Graaf ◽  
Arthur JHA Scholte ◽  
Lucia Kroft ◽  
Jeroen J Bax

Patients presenting with acute chest pain constitute a common and important diagnostic challenge. This has increased interest in using computed tomography for non-invasive visualization of coronary artery disease in patients presenting with acute chest pain to the emergency department; particularly the subset of patients who are suspected of having an acute coronary syndrome, but without typical electrocardiographic changes and with normal troponin levels at presentation. As a result of rapid developments in coronary computed tomography angiography technology, high diagnostic accuracies for excluding coronary artery disease can be obtained. It has been shown that these patients can be discharged safely. The accuracy for detecting a significant coronary artery stenosis is also high, but the presence of coronary artery atherosclerosis or stenosis does not imply necessarily that the cause of the chest pain is related to coronary artery disease. Moreover, the non-invasive detection of coronary artery disease by computed tomography has been shown to be related with an increased use of subsequent invasive coronary angiography and revascularization, and further studies are needed to define which patients benefit from invasive evaluation following coronary computed tomography angiography. Conversely, the implementation of coronary computed tomography angiography can significantly reduce the length of hospital stay, with a significant cost reduction. Additionally, computed tomography is an excellent modality in patients whose symptoms suggest other causes of acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary embolism. Furthermore, the acquisition of the coronary arteries, thoracic aorta, and pulmonary arteries in a single computed tomography examination is feasible, allowing ‘triple rule-out’ (exclusion of aortic dissection, pulmonary embolism, and coronary artery disease). Finally, other applications, such as the evaluation of coronary artery plaque composition, myocardial function and perfusion, or fractional flow reserve, are currently being developed and may also become valuable in the setting of acute chest pain in the future.


Author(s):  
Michiel A de Graaf ◽  
Arthur JHA Scholte ◽  
Lucia Kroft ◽  
Jeroen J Bax

Patients presenting with acute chest pain constitute a common and important diagnostic challenge. This has increased interest in using computed tomography for non-invasive visualization of coronary artery disease in patients presenting with acute chest pain to the emergency department; particularly the subset of patients who are suspected of having an acute coronary syndrome, but without typical electrocardiographic changes and with normal troponin levels at presentation. As a result of rapid developments in coronary computed tomography angiography technology, high diagnostic accuracies for excluding coronary artery disease can be obtained. It has been shown that these patients can be discharged safely. The accuracy for detecting a significant coronary artery stenosis is also high, but the presence of coronary artery atherosclerosis or stenosis does not imply necessarily that the cause of the chest pain is related to coronary artery disease. Moreover, the non-invasive detection of coronary artery disease by computed tomography has been shown to be related with an increased use of subsequent invasive coronary angiography and revascularization, and further studies are needed to define which patients benefit from invasive evaluation following coronary computed tomography angiography. Conversely, the implementation of coronary computed tomography angiography can significantly reduce the length of hospital stay, with a significant cost reduction. Additionally, computed tomography is an excellent modality in patients whose symptoms suggest other causes of acute chest pain such as aortic aneurysm, aortic dissection, or pulmonary embolism. Furthermore, the acquisition of the coronary arteries, thoracic aorta, and pulmonary arteries in a single computed tomography examination is feasible, allowing ‘triple rule-out’ (exclusion of aortic dissection, pulmonary embolism, and coronary artery disease). Finally, other applications, such as the evaluation of coronary artery plaque composition, myocardial function and perfusion, or fractional flow reserve, are currently being developed and may also become valuable in the setting of acute chest pain in the future.


2018 ◽  
pp. 47-55 ◽  
Author(s):  
E. S. Pershina ◽  
V. E. Sinitsin ◽  
E. A. Mershina ◽  
I. M. Arkhipova ◽  
S. P. Semitko ◽  
...  

Objectives: to determine the diagnostic performance of non-invasive FFR derived from standard acquired coronary computed tomography angiography (CTA) datasets (FFRCT) for the diagnosis of myocardial ischemia in patients with suspected stable coronary artery disease (CAD).Methods.Prospective study included 16 patients ((m/f – 13/3 mean age 47.8 ± 2.3 years) with CAD and coronary stenosis 40–75% lumen reduction. Coronary CTA was performed prior to ICA with invasive FFR measurement. FFRCT was calculated and interpreted in a blinded fashion by an independent Core Laboratory (HeartFlow, USA). Results were compared to invasively measured FFR, with ischemia defined as FFRCT or FFR ≤ 0.80.Results. The area under the receiver operating characteristic curve (95% CI) for FFCT was 0.90. Per-vessel sensitivity and specificity to identify myocardial ischemia were 91% and 89% for FFRCT.Conclusion.FFRCT provides high diagnostic accuracy, and discrimination for the diagnosis of hemodynamically significant CAD with invasive FFR as the reference standard. 


2021 ◽  
Vol 6 (1) ◽  
pp. 37-42
Author(s):  
Roxana Hodas ◽  
Ștefania Alexandra Polexa ◽  
Manuca Rareș ◽  
Theodora Benedek

Abstract Patients with chest pain presenting to the emergency room are currently investigated using either invasive coronary angiography (ICA) or noninvasive coronary computed tomography angiography (CCTA). ICA remains an expensive diagnostic tool and exposes patients to a high risk of periprocedural complication. Besides the currently available expansive economic evidence, there is still an important lingering issue: to establish, from the healthcare provider’s point of view, which is the most cost-effective investigation tool for the detection of significant coronary artery disease. The aim of this article is to present the latest developments in the field of imaging tools for the detection of coronary atherosclerosis in patients with chest pain, from the perspective of a cost-effectiveness analysis.


ESC CardioMed ◽  
2018 ◽  
pp. 1348-1353
Author(s):  
Stephan Achenbach

For diagnosis and treatment planning of patients with stable coronary artery disease, coronary angiography is of particular importance. Invasive coronary angiography is a robust and accurate method for the identification of coronary artery stenoses and occlusions, with the option for immediate intervention. Due to its invasiveness, its small, but not negligible risk for complications, and the fact that angiographic stenosis severity does not closely correspond with ischaemia, coronary angiography is not a first-line test in patients with suspected coronary artery disease. Invasive coronary angiography should be performed when non-invasive testing indicates the presence of relevant ischaemia, when symptoms are compelling and cannot be controlled by medication, or when symptoms are accompanied by reduced left ventricular ejection fraction. In order to determine the presence or absence of ischaemia, invasive coronary angiography can be complemented by fractional flow reserve measurements. Coronary computed tomography angiography is a non-invasive alternative method to visualize the coronary lumen, but requires careful patient selection, data acquisition, and processing. It is not as stable and robust as invasive coronary angiography. However, the use of coronary computed tomography angiography can be considered in patients with a low-to-intermediate risk for coronary artery disease in order to rule out coronary artery stenoses when patient characteristics indicate a high likelihood of fully diagnostic image quality.


Author(s):  
Po-Yi Li ◽  
Ru-Yih Chen ◽  
Fu-Zong Wu ◽  
Guang-Yuan Mar ◽  
Ming-Ting Wu ◽  
...  

The objective of this study was to determine how coronary computed tomography angiography (CCTA) can be employed to detect coronary artery disease in hospital employees, enabling early treatment and minimizing damage. All employees of our hospital were assessed using the Framingham Risk Score. Those with a 10-year risk of myocardial infarction or death of >10% were offered CCTA; the Coronary Artery Disease Reporting and Data System (CAD-RADS) score was the outcome. A total of 3923 hospital employees were included, and the number who had received CCTA was 309. Among these 309, 31 (10.0%) had a CAD-RADS score of 3–5, with 10 of the 31 (32.3%) requiring further cardiac catheterization; 161 (52.1%) had a score of 1–2; and 117 (37.9%) had a score of 0. In the multivariate logistic regression, only age of ≥ 55 years (p < 0.05), hypertension (p < 0.05), and hyperlipidemia (p < 0.05) were discovered to be significant risk factors for a CAD-RADS score of 3–5. Thus, regular and adequate control of chronic diseases is critical for patients, and more studies are required to be confirmed if there are more significant risk factors.


Sign in / Sign up

Export Citation Format

Share Document