scholarly journals On the tidal evolution of massive X-ray binaries: the tidal evolution time-scales for very long orbital periods

1985 ◽  
Vol 213 (1) ◽  
pp. 85-96 ◽  
Author(s):  
J. C. B. Papaloizou ◽  
G. J. Savonije
2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


2018 ◽  
Vol 14 (S346) ◽  
pp. 417-425 ◽  
Author(s):  
Jakub Klencki ◽  
Gijs Nelemans

AbstractX-ray binaries with black hole (BH) accretors and massive star donors at short orbital periods of a few days can evolve into close binary BH (BBH) systems that merge within the Hubble time. From an observational point of view, upon the Roche-lobe overflow such systems will most likely appear as ultra-luminous X-ray sources (ULXs). To study this connection, we compute the mass transfer phase in systems with BH accretors and massive star donors (M > 15 Mʘ) at various orbital separations and metallicities. In the case of core-hydrogen and core-helium burning donors (cases A and C of mass transfer) we find the typical duration of super-Eddington mass transfer of up to 106 and 105 yr, with rates of 10−6 and 10−5Mʘ yr-1, respectively. Given that roughly 0.5 ULXs are found per unit of star formation rate, we estimate the rate of BBH mergers from stable mass transfer evolution to be at most 10 Gpc−3 yr−1.


1987 ◽  
Vol 92 ◽  
pp. 509-513
Author(s):  
G.M.H.J. Habets

Rappaport & Van den Heuvel (1982) suggested the following formation scenario for B emission (Be)/X-ray binaries: the progenitor of the neutron star is the initial primary star with mass M1 = 10-20 M⊙, which during hydrogen-shell burning transfers mass to the companion (with M2 < M1). The secondary is spun up due to disk-accretion (e.g. Packet 1981) and has become a rapidly rotating Be star (M ≃ 10-20 M⊙).With this scenario the observed orbital periods (Porb > 15 d) of the Be/X-ray binaries can be explained. This was shown by van den Heuvel (1983) by adopting an idealized period distribution for unevolved O- and B-type close binaries with Porb, < 30 d (see Fig. 1) and assuming conservative evolution, i.e. that mass and angular momentum are conserved during mass transfer.


2004 ◽  
Vol 194 ◽  
pp. 228-228
Author(s):  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch ◽  
K. Werner

We have developed a new code for the calculation of synthetic spectra and vertical structures of accretion disks in cataclysmic variables and compact X-ray binaries. Here we present results for the CV system AM CVn.AM CVn stars are a special type of cataclysmic variables, also called helium cataclysmics. They are systems of interacting binary white dwarfs, consisting of a degenerate C-O white dwarf primary and a low mass semi-degenerate secondary. The secondary loses mass, almost, pure helium, to the primary, forming an accretion disk. They have all in common a helium-rich composition, analoguous to the hydrogen-rich cataclysmic variables. They show photometric variabilities on time scales of ~ 1000s, the prototype of the class, AM CVn, e.g. exhibits a variability of ~ 18 min (Nelemans et al. 2001).


1994 ◽  
Vol 162 ◽  
pp. 213-215
Author(s):  
Priyamvada Saraswat ◽  
Krishna M.V. Apparao

Compared to several other Be/X-ray binaries, 4U1907+09 has been observed more frequently due to the fact that it is found in an ‘on’ state more often. It also has a short orbital period of ~ 8 days as compared to the long orbital periods commonly found in these binaries. But despite the attention it has received, the exact nature of the primary remains elusive. While some observers maintain it to be a Be/X-ray binary, others prefer to put it into the class of OB supergiants.


2018 ◽  
Vol 479 (3) ◽  
pp. 3526-3544 ◽  
Author(s):  
Kristen Garofali ◽  
Benjamin F Williams ◽  
Tristan Hillis ◽  
Karoline M Gilbert ◽  
Andrew E Dolphin ◽  
...  

2007 ◽  
Vol 40 (10) ◽  
pp. 1528-1531 ◽  
Author(s):  
R. Sood ◽  
S. Farrell ◽  
P. O’Neill ◽  
S. Dieters
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document