scholarly journals Fluctuations in the X-ray background and the large-scale structure of the Universe

1988 ◽  
Vol 230 (2) ◽  
pp. 189-206 ◽  
Author(s):  
X. Barcons ◽  
A. C. Fabian
2002 ◽  
Vol 580 (2) ◽  
pp. 672-684 ◽  
Author(s):  
S. P. Boughn ◽  
R. G. Crittenden ◽  
G. P. Koehrsen

1990 ◽  
Vol 139 ◽  
pp. 416-417 ◽  
Author(s):  
Honguang Bi ◽  
P. Mészáros ◽  
A. Mészáros

In two previous publications (Mészáros and Mészáros 1988 “Paper I”; Bagoly, Mészáros, and Mészáros 1988 “Paper II”), we have studied the fluctuations of the X-ray background (XRB) expected if the XRB is produced by discrete sources distributed as galaxies. The distribution of matter was assumed to follow the large-scale structure in the form of spherical clusters (superclusters) or spherical voids. In Paper I the density contrast of XRB sources inside and outside structures was taken to be a step function of constant height, whereas in Paper II we introduced arbitrary density contrasts (independent of redshift) and allowed for a redshift evolution of the luminosity of the sources. This led to predicted angular fluctuations of the XRB, which, when we compared them with the HEAO–1 observational limit (Shafer 1983), allowed us to set limits on the type and density of structures.


1983 ◽  
Vol 104 ◽  
pp. 333-343
Author(s):  
R. A. Shafer ◽  
A. C. Fabian

In this presentation we show how the study of the isotropy of the X-ray sky contributes to our understanding of the structure of the universe at moderate redshifts (1≲z<<zrecombination). Actually, the anisotropy of the sky flux provides the information, much as the microwave sky anisotropy does for earlier epochs. [See reports in this volume.] Though we are currently unable to make measurements with the precision and small solid angles typically achieved in the microwave, comparatively crude limits from the X-ray fluctuations place limits on the largest scale structure of the universe. We first outline the measurements of the X-ray sky and its anisotropies made with the HEAO 1 A-2 experiment. Detailed presentations are found elsewhere [Shafer 1982; Marshall et al. 1980; Piccinotti et. al. 1982; Iwan et al. 1982; Shafer et al. in prep.]. We then show how the anisotropies place limits on the origin of the X-ray sky and on any large scale structure of the universe, following the example of previous analyses which used earlier anisotropy estimates [see e.g. Fabian and Rees 1978; Rees 1980; Fabian 1981].


1988 ◽  
Vol 130 ◽  
pp. 203-206
Author(s):  
A. Mészáros ◽  
P. Mészáros

At present there are in use three different models to characterize the large scale structure of the universe. The clustering model (Soneira and Peebles, 1978) assumes that the superclusters are high density islands in a low density sea. The void model (Joeveer and Einasto, 1978), on the other hand, assumes that the voids are isolated low density islands in a high density sea. The sponge model (Gott et al., 1986) assumes that high and low density regions occupy equal volumes, and that the high and low density regions are both connected. The straightforward way to decide among these three models is the direct investigation of the spatial distribution of the galaxies. Nevertheless, there is an essentially different observational method that may also be useful to obtain some information about these models. The X-ray background radiation (XRB) is due either to the bremsstrahlung of hot intergalactic gas, or to the sum of the radiation of unresolved discrete sources (E.G. Boldt 1987). If the “discrete” origin is correct, then obviously the actual number of sources, and hence their total intensity, may vary from one part of the sky to another. Thus, in this case one has the possibility to estimate the number of sources in a given volume from the observed isotropy of the XRB. For example, Hamilton and Helfand (1987) suggest that the number of sources must be larger than 5000/(degree)2. Any such estimate needs several assumptions. In the previous works one usually assumed that the sources were distributed completely randomly; see, e.g. Fabian (1972). Nevertheless, if the XRB is generated by young galaxies (Bookbinder et al. 1980), it is not excluded that the sources of the SRB are also grouped similarly to galaxies. Because in this case the distribution of sources of the XRB is not completely random, one may expect a different type of fluctuations in the intensity of the XRB. In addition, since the grouping may be quite different for the three structure models, the expected fluctuations may also be different. There is a chance to discriminate among them using the observed isotropy of XRB. The basic observational datum concerning the isotropy of the XRB is well-known: the fluctuations in the intensity are smaller than 3%, if 3° × 3° pixels are used Shafer (1983).


1988 ◽  
Vol 130 ◽  
pp. 539-539
Author(s):  
X. Barcons ◽  
A.C. Fabian

The clustering of the background-contributing X-ray sources is reflected in the excess (i.e., non-Poisson) fluctuations in the X-ray background (XRB). Observational limits on ΔI/I can therefore be used to constrain either the clumpiness of X-ray sources or their contribution to the XRB if their clustering properties are known (see Barcons & Fabian 1987 for details).


Sign in / Sign up

Export Citation Format

Share Document